Molecular evolution of Trichuris muris isolated from different Muridae hosts in Europe

Abstract

A phylogeographic study was carried out of Trichuris muris, nematode parasitizing Murinae rodents from the Muridae family, isolated from four different hosts and from different geographical regions of Europe by amplification and sequencing of the ITS1-5.8S-ITS2 fragment of the ribosomal DNA. T. muris was found in the Apodemus sylvaticus, Apodemus flavicollis, Mus domesticus, and Rattus rattus rodents. The molecular results confirm the presence of DNA polymorphisms among T. muris isolates from Europe. The present study shows two clear-cut geographical and genetic lineages: one of them is widespread from northern Spain (Catalonia) to Denmark (Western European region), while the second is widespread in the Eastern European region (Croatia, Rumania, and Turkey). These two genotypes can be easily distinguished by a PCR-RFLP analysis of this sequence with the ApalI restriction enzyme. Moreover, networks and phylogenetic reconstructions also reveal that T. muris from various Murinae rodents did not differentiate according to the host species that they parasitize. Furthermore, T. muris isolated from The Canary Islands revealed a typical haplotype (H6) only present in The Canary Islands and not in continental Europe. It is suggested that one haplotype from La Gomera Island is the ancestor of T. muris in the Canary Islands.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge, MA

    Google Scholar 

  2. Bandelt HJ, Foster P, Röhl A (1999) Median-joining networks for inferring intraspecies phylogenies. Mol Biol Evol 16:37–48

    CAS  PubMed  Google Scholar 

  3. Campbell AJD, Gasser RB, Chilton NB (1995) Differences in a ribosomal sequence of Strongylus species allow identification of single eggs. Int J Parasitol 25:359–365

    Article  CAS  PubMed  Google Scholar 

  4. Cutillas C, Oliveros R, De Rojas M, Guevara DC (2002) Determination of Trichuris muris from muroid hosts and T. arvicolae (Nematoda) from arvicolid rodents by amplification and sequentiation of the ITS1–5, 8S-ITS2 segment of the ribosomal DNA. Parasitol Res 88:574–582

    Article  CAS  PubMed  Google Scholar 

  5. Feliú C, Spakulová M, Casanova JC, Renaud F, Morand S, Hugot JP, Santalla F, Durand P (2000) Genetic and morphological heterogenity in small rodent whipworms in Southwestern Europe: characterization of Trichuris muris and description of Trichuris arvicolae n. sp. (Nematoda: Trichuridae). J Parasitol 86:442–449

    PubMed  Google Scholar 

  6. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  7. Funk VA, Wagner WL (1995) Biogeographic patterns in the Hawaiian Islands. In: Wagner WL, Funk VJ (eds) Hawaiian biogeography: evolution on a hot spot archipielago. Smithsonian Institution Press, Washington, DC, pp 379–419

    Google Scholar 

  8. Gasser RB, Nansen P, Guldberg P (1996) Fingerprinting sequence variation in ribosomal DNA of parasites by DGGE. Mol Cell Probes 10:99–105

    Article  CAS  PubMed  Google Scholar 

  9. Hamada H, Petrino MG, Kakunaga T (1982) A novel repeated element with Z-DNA-forming potential is widely found in evolutionarily diverse eukaryotic genomes. Proc Nat Acad Sci USA 79:6465–6469

    Article  CAS  PubMed  Google Scholar 

  10. Heaney LR, Walsh JS, Peterson AT (2005) The roles of geological history and colonization abilities in genetic differentiation between mammalian populations in the Philippine archipelago. J Biogeograph 32:700–706

    Google Scholar 

  11. Jukes TH, Cantor CR (1969) Evolution of protein molecules. Mammalian Protein Metabolism. Academic Press, New York, pp 21–132

    Google Scholar 

  12. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  13. Merkusheva YV, Bobkova AF (1981) Helminths of domestic and wild animals of Bielorussia. Nauk TechMinsk: 118

  14. Nagano I, Wu Z, Matsuo A, Pozio E, Takahashi Y (1999) Identification of Trichinella isolates by polymerase chain reaction-restriction fragment length polymorphism of the mitocondrial cytochrome c-oxidase subunit I gene. Int J Parasitol 29:1113–1120

    Article  CAS  PubMed  Google Scholar 

  15. Nieberding C, Morand S, Libois R, Michaux JR (2004) A parasite reveals cryptic phylogeographic history of its host. Proc R Soc Lond B 271:2559–2568

    Article  CAS  Google Scholar 

  16. Nieberding CM, Durette-Desset MC, Vanderpoorten A, Casanova JC, Ribas A, Deffontaine V, Feliú C, Morand S, Libois R, Michaux JR (2008) Geography and host biogeography matter for understanding the phylogeography of a parasite. Mol Phyl Evol 47:538–554

    Article  CAS  Google Scholar 

  17. Papadopoulou A, Anastasiou I, Keskins B, Vogler A (2009) Comparative phylogeography of tenebrionid beetles in the Aegean archipelago: the effect of dispersal ability and habitat preference. Mol Ecol 18:2503–2517

    Article  CAS  PubMed  Google Scholar 

  18. Reddy A, Fried B (2007) The use of Trichuris suis and other helminth therapies to treat Crohn’s disease. Parasitol Res 100:921–927

    Article  PubMed  Google Scholar 

  19. Rothe P (1974) The Canary Islands-origin and evolution. Naturwissenschaften 61:526–533

    Article  Google Scholar 

  20. Rozas J, Rozas R (1997) DnasP version 2.0: a novel software package for extensive molecular population genetics analysis. Comput Applic Biosci 13:307–311

    CAS  Google Scholar 

  21. Saitou N, Nei N (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  22. Steppan SJ, Adkins RM, Spinks PQ, Hale C (2005) Multigene phylogeny of the Old World mice, Murinae, reveals distinct geographic lineages and the declining utility of mitochondrial genes compared to nuclear genes. Mol Phyl Evol 37:370–388

    Article  CAS  Google Scholar 

  23. Stevenson LA, Chilton NB, Gasser RB (1995) Differentiation of Haemonchus placei from H. contortus (Nematoda: Trichostrongylidae) by the ribosomal DNA second internal transcribed spacer. Int J Parasitol 25:483–488

    Article  CAS  PubMed  Google Scholar 

  24. Subbotin SA, Vierstraete A, De Ley P, Rowe J, Waeyenberge L, Moens M, Vanfleteren JR (2001) Phylogenetic relationships within the cyst-forming nematodes (Nematoda, Heteroderidae) based on analysis of sequences from the ITS regions of ribosomal DNA. Mol Phyl Evol 21:1–16

    Article  CAS  Google Scholar 

  25. Summers RW, Elliott DE, Khurram Qadir MD, Urban JF Jr, Thompson R, Weinstock JV (2003) Trichuris suis seems to be safe and possibly effective in the treatment of inflammatory bowel disease. Am J Gastroenterol 98:2034–2041

    Article  PubMed  Google Scholar 

  26. Summers RW, Elliott DE, Urban JF Jr, Weinstock JV (2005) Trichuris suis therapy in Crohn's disease. Gut 54:87–90

    Article  CAS  PubMed  Google Scholar 

  27. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  28. Tenora F (1967) The helminthfauna of small rodents of the Rohacskadolina Valley (Liptovske Hole Mts., Slovakia). Sci Nat Acad Brno 1:29–68

    Google Scholar 

  29. Wesson DM, Collins FH (1992) Sequence and secondary structure of 5.8S rRNA in the tick, Ixodes scapularis. Nucl Acids Res 20:1139

    Article  CAS  PubMed  Google Scholar 

  30. Wu Z, Snabel V, Pozio E, Hurnikova Z, Nareaho A, Nagano I, Takahashi Y (2007) Genetic relationships among Trichinella pseudospiralis isolates from Australian, Neartic, and Paleartic regions. Parasitol Res 101:1567–1573

    Article  CAS  PubMed  Google Scholar 

  31. Zarlenga DS, Dame JB (1992) The identification and characterization of a break within the large subunit ribosomal RNA of Trichinella spiralis: comparison of gap sequences within the genus. Mol Biochem Parasitol 51:281–289

    Article  CAS  PubMed  Google Scholar 

  32. Zarlenga DS, Aschenbrenner RA, Lichtenfels JR (1996) Variations in microsatellite sequences provide evidence for population differences and multiple ribosomal gene repeats within Trichinella pseudospiralis. J Parasitol 82:534–538

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Dr. Voitto Haukisalmi and Dr. Heikki Henttonen from the Finnish Forest Research Institute, Vantaa (Finland) who provided samples from different European regions. We also wish to thank Mr. Geoffrey Giddings for the critical reading of the manuscript. The research has been funded by three grants from the Ministry of Science and Technology (CGL2004-00630/BOS, CGL 2006-04937/BOS, CGL2008-01459/BOS).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Cristina Cutillas.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Callejón, R., de Rojas, M., Nieberding, C. et al. Molecular evolution of Trichuris muris isolated from different Muridae hosts in Europe. Parasitol Res 107, 631–641 (2010). https://doi.org/10.1007/s00436-010-1908-9

Download citation

Keywords

  • Canary Island
  • Genetic Lineage
  • Palearctic Region
  • Geographical Lineage
  • Eastern European Region