Skip to main content
Log in

Chemical composition and larvicidal evaluation of Mentha, Salvia, and Melissa essential oils against the West Nile virus mosquito Culex pipiens

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The volatile metabolites of wild-growing Mentha spicata, M. longifolia, M. suaveolens, Melissa officinalis, Salvia fruticosa, S. pomifera subsp. calycina, and S. pomifera subsp. pomifera from Greece were determined by gas chromatography and gas chromatography–mass spectrometry. The insecticidal properties of the analyzed essential oils were screened on Culex pipiens larvae. Additionally two of the main components of the essential oils, piperitenone oxide and 1,8-cineole were assayed against C. pipiens in order to define the affiliation between them and the larvicidal properties of the oils. The most effective oils were M. suaveolens (major constituent piperitenone oxide, 62.4%), M. spicata (piperitenone oxide, 35.7% and 1,8-cineole, 14.5%) and M. longifolia—Central Greece (piperitenone oxide, 33.4%; 1,8-cineole, 24.5% and trans-piperitone epoxide, 17.4%), which exhibited LC50 values ranging from 47.88 to 59.33 mg l−1. Medium activity revealed the oils of M. officinalis (terpin-4-ol, 15.8%; caryophyllene oxide, 13.2%; sabinene, 12.9%; β-pinene, 12.1%; and trans-caryophyllene, 10.2%), M. longifolia—Southern Greece (carvone, 54.7% and limonene 20.0%), S. pomifera subsp. pomifera (trans-caryophyllene, 22.5% and trans-thujone, 21.0%), S. pomifera subsp. calycina—West Southern Greece (trans-thujone, 56.1% and 1,8-cineole, 10.4%), and S. fruticosa—population 2 (camphor, 23.1%; α-pinene, 12.7%; and borneol, 12.6%), with LC50 values ranging from 78.28 to 91.45 mg l−1. S. pomifera subsp. calycina (Central Greece) essential oil (trans-thujone, 26.5% and cis-thujone, 12.0%) presented rather low activity (LC50 values 140.42 mg l−1), while S. fruticosa—population 1 (1,8-cineole, 31.4% and camphor, 22.6%) was the only inactive oil. Additionally, the constituent piperitenone oxide was found to be highly active (LC50 values 9.95 mg l−1), whereas 1,8-cineole revealed no toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams RP (2007) Identification of essential oil components by gas chromatography/ quadrupole mass spectrometry. Allured Publ Corp, Carol Stream

    Google Scholar 

  • Amer A, Mehlhorn H (2006) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol Res 99:466–472

    Article  PubMed  Google Scholar 

  • Ansari MA, Vasudevan P, Tandon M, Razdan RK (2000) Larvicidal and mosquito repellent action of peppermint (Mentha piperita) oil. Bioresour Technol 71:267–271

    Article  CAS  Google Scholar 

  • Basta A, Tzakou O, Couladis M (2005) Composition of the leaves essential oil of Melissa officinalis s.l. from Greece. Flavour Fragr J 20:642–644

    Article  CAS  Google Scholar 

  • Campbell GL, Marfin AA, Lanciotti RS, Gubler DJ (2002) West Nile Virus. Lancet Infect Dis 2:519–529

    Article  PubMed  Google Scholar 

  • Cetin H, Cinbilgel I, Yanikoglu A, Gokceoglu M (2006) Larvicidal activity of some Labiatae (Lamiaceae) plant extracts from Turkey. Phytother Res 20:1088–1090

    Article  PubMed  Google Scholar 

  • Dauphin G, Zientara S, Zeller H, Murgue B (2004) West Nile: worldwide current situation in animals and humans. Comp Immunol Microbiol Infect Dis 27:343–355

    Article  PubMed  Google Scholar 

  • Don-Pedro KN (1999) Investigation of single and joint fumigant insecticidal action of citrus peel oil components. Pestic Sci 46:79–84

    Article  Google Scholar 

  • Fernandes R (1972) Melissa L. In: Tutin TG, Heywood WH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (eds) Flora Europaea 3. Cambridge University Press, Cambridge, pp 162–163

    Google Scholar 

  • Floore TG (2006) Mosquito larval control practices: past and present. J Am Mosq Control Assoc 22:527–533

    Article  CAS  PubMed  Google Scholar 

  • Gleiser RM, Zygadlo JA (2007) Insecticidal properties of essential oils from Lippia turbinate and Lippia polystachya (Verbenaceae) against Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 101:1349–1354

    Article  PubMed  Google Scholar 

  • Greuter W, Burdet HM, Long G (1986) Med-Checklist 3. Conservatoire et Jardin botaniques de Geneva, Genève

    Google Scholar 

  • Harley RM (1972) Mentha L. In: Tutin TG, Heywood WH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (eds) Flora Europaea 3. Cambridge University Press, Cambridge, pp 183–186

    Google Scholar 

  • Hedge IC (1972) Salvia L. In: Tutin TG, Heywood WH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (eds) Flora Europaea 3. Cambridge University Press, Cambridge, pp 189–190

    Google Scholar 

  • Isman MB (2000) Plant essential oils for pest and disease management. Crop prot 19:603–608

    Article  CAS  Google Scholar 

  • Karousou R, Vokou D, Kokkini S (1998) Distibution and essential oils of Salvia pomifera subsp. pomifera (Labiatae) on the island of Crete (S Greece). Biochem Syst Ecol 26:889–897

    Article  CAS  Google Scholar 

  • Kofidis G, Bosabalidis A, Kokkini S (2004) Seasonal variation of essential oils in a linalool-rich chemotype of Mentha spicata grown wild in Greece. J Essent Oil Res 16:469–472

    CAS  Google Scholar 

  • Kokkini S, Papageorgiou VP (1988) Constiruents of essential oils from Mentha longifolia growing wild in Greece. Planta Med 54:59–60

    Article  CAS  PubMed  Google Scholar 

  • Kokkini S, Vokou D (1989) Mentha spicata (Lamiaceae) chemotypes grown wild in Greece. Econ Bot 43:192–202

    CAS  Google Scholar 

  • Kokkini S, Karousou R, Lanaras T (1995) Essential oils of spearmint (carvone-rich) plants from the island of Crete (Greece). Biochem Syst Ecol 23:425–430

    Article  CAS  Google Scholar 

  • Lee JH, Kokas JE (2004) Field Evaluation of CDC gravid trap attractants to primary West Nile virus vectors, Culex mosquitoes in New York State. J Am Mosq Control Assoc 20:248–253

    PubMed  Google Scholar 

  • Lundström JO (1999) Mosquito-borne viruses in Western Europe: a review. J Vector Ecol 24:1–39

    PubMed  Google Scholar 

  • Mahrenholz P (2008) Climate change and adaptation needs. Parasitol Res 103:S139–S146

    Article  PubMed  Google Scholar 

  • Michaelakis A, Koliopoulos G, Milonas P, Kontodimas D, Polissiou M, Kimbaris AC, Papachristos D (2008) Activity of non-oxygenated versus oxygenated monoterpenes against mosquitoes. An attempt to correlate toxicity with chemical structure [abstract]. In: 7 th Joint meeting of AFERP, GA, PSE & SIF. Natural products with pharmaceutical, nutraceutical, cosmetic and agrochemical interest. August 3-8, 2008, Athens, Greece

  • Michaelakis A, Papachristos D, Kimbaris A, Koliopoulos G, Giatropoulos A, Polissiou MG (2009) Citrus essential oils and four enantiomeric pinenes against Culex pipiens (Diptera: Culicidae). Parasitol Res. doi:10.1007/s00436-009-1452-7

    Google Scholar 

  • Pitarokili D, Tzakou O, Kalamarakis A (2002) Activity of the essential oil of Salvia pomifera L. ssp. calycina (Sm.) Hayek against soilborne pathogens. J Essent Oil Res 14:72–75

    CAS  Google Scholar 

  • Pitarokili D, Tzakou O, Loukis A, Harvala C (2003) Volatile metabolites from Salvia fruticosa as antifungal agents in soilborne pathogens. J Agric Food Chem 51:3294–3301

    Article  CAS  PubMed  Google Scholar 

  • Samarasekera R, Weerasinghe IS, Hemalal KDP (2008) Insecticidal activity of menthol derivatives against mosquitoes. Pest Manag Sci 64:290–295

    Article  CAS  PubMed  Google Scholar 

  • Shaalan E, Canyon D, Younes MW, Abdel-Wahad H, Mansour AH (2005) A review of botanical phytochemicals with mosquitocidal potential. Environ Int 31:1149–1166

    Article  CAS  PubMed  Google Scholar 

  • Sukumar K, Perich MJ, Boobar LR (1991) Botanical derivatives in mosquito control: a review. J Am Mosq Control Assoc 7:210–237

    CAS  PubMed  Google Scholar 

  • Trabousli AF, Taoubi K, Samih EH, Bessiere JM, Rammal S (2002) Incecticidal properties of essential oils against the mosquito Culex pipiens molestus (Diptera: Culicidae). Pestic Manag Sci 58:491–495

    Article  Google Scholar 

  • Tripathi AK, Prajapati V, Ahmad A, Aggarwal KK, Khanuja PS (2004) Piperitenone oxide as toxic, repellent, and reproduction retardant toward malarial Anopheles stephensi (Diptera Anophelinae). J Med Entom 41:691–698

    Article  CAS  Google Scholar 

  • WHO, Instructions for determining the susceptibility or resistance of mosquito larvae to insecticides. Vol. WHO/VBC/81.807. 1981, Geneva: World Health Organization. p. 6

Download references

Acknowledgments

We would like to thank Prof. M Polissiou and Lect. A Kimbaris (Chemistry Laboratories, Agricultural University of Athens) for kindly providing the isolated piperitenone oxide.

We declare that all the experiments comply with the current laws of Greece.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Tzakou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koliopoulos, G., Pitarokili, D., Kioulos, E. et al. Chemical composition and larvicidal evaluation of Mentha, Salvia, and Melissa essential oils against the West Nile virus mosquito Culex pipiens . Parasitol Res 107, 327–335 (2010). https://doi.org/10.1007/s00436-010-1865-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-010-1865-3

Keywords

Navigation