Skip to main content

Advertisement

Log in

Evaluation of drug effects on Toxoplasma gondii nuclear and plastid DNA replication using real-time PCR

  • Rapid Communication
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Toxoplasma gondii Nicolle and Manceaux, 1908 is a unicellular protozoan that can infect a broad spectrum of organisms including humans. In addition to a nuclear genome, it also carries a circular DNA within a plastid-like organelle (apicoplast) and a linear genome within its mitochondria. The plastid organelle has been shown to be the target of various anti-parasitic drugs or antibiotics. To evaluate the effects of agents on the DNA replication of T. gondii, we tested six drugs (ciprofloxacin, acetylspiramycin, clindamycin, azithromycin, artemether, and sulfadiazine) on the parasite cultured in Hela cells. After drug treatment for 48 h, the parasite growth and DNA replication were evaluated and quantitated using TaqMan real-time quantitative PCR with oligonucleotide primers synthesized based on a gene from the apicoplast genome (ycf24, Genbank accession no. U87145) and a gene from the nuclear genome (uprt, Genbank accession no. U10246). Our results showed that ciprofloxacin was the most effective in inhibiting the replication of the plastid DNA after 48 h drug treatment, with a reduction of 22% in the copy number of the plastid DNA. Artemether was the most effective drug in suppressing the proliferation of tachyzoites. This study also demonstrates that real-time quantitative PCR is a simple and useful technique for monitoring parasite growth and DNA replication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Ajioka JW, Morrissette NS (2009) A century of Toxoplasma research. Int J Parasitol 39:859–860

    Article  PubMed  Google Scholar 

  • Araujo FG, Shepard RM, Remington JS (1991) In vivo activity of the macrolide antibiotics azithromycin, roxithromycin and spiramycin against Toxoplasma gondii. Eur J Clin Microbiol Infect Dis 10:519–524

    Article  CAS  PubMed  Google Scholar 

  • Beckers CJ, Roos DS, Donald RG, Luft BJ, Schwab JC, Cao Y, Joiner KA (1995) Inhibition of cytoplasmic and organellar protein synthesis in Toxoplasma gondii. Implications for the target of macrolide antibiotics. J Clin Invest 95:367–376

    Article  CAS  PubMed  Google Scholar 

  • Blais J, Garneau V, Chamberland S (1993) Inhibition of Toxoplasma gondii protein synthesis by azithromycin. Antimicrob Agents Chemother 37:1701–1703

    CAS  PubMed  Google Scholar 

  • Boothroyd JC (2009) Toxoplasma gondii: 25 years and 25 major advances for the field. Int J Parasitol 39:935–946

    Article  PubMed  Google Scholar 

  • Borst P, Overdulve JP, Weijers PJ, Fase-Fowler F, Van den Berg M (1984) DNA circles with cruciforms from isospora (Toxoplasma) gondii. Biochim Biophys Acta 781:100–111

    CAS  PubMed  Google Scholar 

  • Buckley SM (1973) Survival of Toxoplasma gondii in mosquito cell lines and establishment of continuous infection in vero cell cultures. Exp Parasitol 33:23–26

    Article  CAS  PubMed  Google Scholar 

  • Chan YH, Kwok ACM, Tsang JSH, Wong JTY (2006) Alveolata histone-like proteins have different evolutionary origins. J Evolution Biol 19:1717–1721

    Article  CAS  Google Scholar 

  • Contini C, Seraceni S, Cultrera R, Incorvaia C, Sebastiani A, Picot S (2005) Evaluation of a real-time pcr-based assay using the lightcycler system for detection of Toxoplasma gondii bradyzoite genes in blood specimens from patients with toxoplasmic retinochoroiditis. Int J Parasitol 35:75–283

    Article  Google Scholar 

  • Dunay IR, Heimesaat MM, Bushrab FN, Muller RH, Stocker H, Arasteh K, Kurowski M, Fitzner R, Borner K, Liesenfeld O (2004) Atovaquone maintenance therapy prevents reactivation of toxoplasmic encephalitis in a murine model of reactivated toxoplasmosis. Antimicrob Agents Chemother 48:4848–4854

    Article  CAS  PubMed  Google Scholar 

  • Edvinsson B, Lappalainen M, Evengard B (2006) Real-time pcr targeting a 529-bp repeat element for diagnosis of toxoplasmosis. Clin Microbiol Infect 12:131–136

    Article  CAS  PubMed  Google Scholar 

  • Evans R, Chatterton JMW, Ashburn D, Joss AWL, Ho-Yen O (1999) Cell-culture system for continuous production of Toxoplasma gondii tachyzoites. Eur J Clin Microbiol Infect Dis 18:879–884

    Article  CAS  PubMed  Google Scholar 

  • Fichera ME, Roos DS (1997) A plastid organelle as a drug target in apicomplexan parasites. Nature 390:407–409

    Article  CAS  PubMed  Google Scholar 

  • Fleige T, Fischer K, Ferguson DJ, Gross U, Bohne W (2007) Carbohydrate metabolism in the Toxoplasma gondii apicoplast: Localization of three glycolytic isoenzymes, the single pyruvate dehydrogenase complex, and a plastid phosphate translocator. Eukaryot Cell 6:984–996

    Article  CAS  PubMed  Google Scholar 

  • Gjerdrum LM, Sorensen BS, Kjeldsen E, Sorensen FB, Nexo E, Hamilton-Dutoit S (2004) Real-time quantitative pcr of microdissected paraffin-embedded breast carcinoma: an alternative method for her-2/neu analysis. J Mol Diagn 6:42–51

    CAS  PubMed  Google Scholar 

  • Gleeson MT (2000) The plastid in apicomplexa: what use is it? Int J Parasitol 30:1053–1070

    Article  CAS  PubMed  Google Scholar 

  • Goodman CD, McFadden GI (2007) Fatty acid biosynthesis as a drug target in apicomplexan parasites. Curr Drug Targets 8:15–30

    Article  CAS  PubMed  Google Scholar 

  • Hackstein JH, Mackenstedt U, Mehlhorn H, Meijerink JP, Schubert H, Leunissen JA (1995) Parasitic apicomplexans harbor a chlorophyll a-d1 complex, the potential target for therapeutic triazines. Parasitol Res 81:207–216

    CAS  PubMed  Google Scholar 

  • Jeffries AC, Johnson AM (1996) The growing importance of the plastid-like DNAs of the apicomplexa. Int J Parasitol 26:1139–1150

    Article  CAS  PubMed  Google Scholar 

  • Ke OY, Krug EC, Marr JJ, Berens RL (1990) Inhibition of growth of Toxoplasma gondii by qinghaosu and derivatives. Antimicrob Agents Chemother 34:1961–1965

    CAS  PubMed  Google Scholar 

  • Kohler S (2005) Multi-membrane-bound structures of apicomplexa: I. The architecture of the Toxoplasma gondii apicoplast. Parasitol Res 96:258–272

    Article  PubMed  Google Scholar 

  • Kohler S, Delwiche CF, Denny PW, Tilney LG, Webster P, Wilson RJM, Palmer JD, Roos DS (1997) A plastid of probable green algal origin in apicomplexan parasites. Science 275:1485–1489

    Article  CAS  PubMed  Google Scholar 

  • Lin MH, Chen TC, Kuo TT, Tseng CC, Tseng CP (2000) Real-time PCR for quantitative detection of Toxoplasma gondii. J Clin Microbiol 38:4121–4125

    Google Scholar 

  • Liu Y, Zhang YH, Li Z, Yao XM (1997) Experimental study on the effect of artemether against Toxoplasma gondii in vitro. Chin J Parasitol Parasitic Dis 15:366–369

    Google Scholar 

  • Matsuzaki M, Kikuchi T, Kita K, Kojima S, Kuroiwa T (2001) Large amounts of apicoplast nucleoid DNA and its segregation in Toxoplasma gondii. Protoplasma 218:180–191

    Article  CAS  PubMed  Google Scholar 

  • Pfefferkorn ER, Borotz SE (1994) Comparison of mutants of Toxoplasma gondii selected for resistance to azithromycin, spiramycin, or clindamycin. Antimicrob Agents Chemother 38:31–37

    CAS  PubMed  Google Scholar 

  • Ramya TN, Mishra S, Karmodiya K, Surolia N, Surolia A (2007) Inhibitors of nonhousekeeping functions of the apicoplast defy delayed death in plasmodium falciparum. Antimicrob Agents Chemother 51:307–316

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen R (2001) Quantification on the lightcycler. In: Meuer S, Wittwer C, Nakagawara K (eds) Rapid cycle real-time PCR, methods and applications. Springer Press, Heidelberg, pp 21–34

    Google Scholar 

  • Roos DS, Donald RGK, Morrissette NS, Moulton ALC (1994) Molecular tools for genetic dissection of the protozoan parasite Toxoplasma gondii. Methods Cell Biol 45:27–63

    Article  CAS  PubMed  Google Scholar 

  • Roos DS, Crawford MJ, Donald RG, Kissinger JC, Klimczak LJ, Striepen B (1999) Origin, targeting, and function of the apicomplexan plastid. Curr Opin Microbiol 2:426–432

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual, 3rd edn. CSHL Press, Cold Spring Harbour, New York, pp 1.116–1.118

    Google Scholar 

  • Schoondermark-van de Ven E, Vree T, Melchers W, Camps W, Galama J (1995) In vitro effects of sulfadiazine and its metabolites alone and in combination with pyrimethamine on Toxoplasma gondii. Antimicrob Agents Chemother 39:763–765

    CAS  PubMed  Google Scholar 

  • Sonda S, Hehl AB (2006) Lipid biology of apicomplexa: perspectives for new drug targets, particularly for Toxoplasma gondii. Trends Parasitol 22:41–47

    Article  CAS  PubMed  Google Scholar 

  • Switaj K, Master A, Skrzypczak M, Zaborowski P (2005) Recent trends in molecular diagnostics for Toxoplasma gondii infections. Clin Microbiol Infec 11:170–176

    Article  CAS  Google Scholar 

  • Wu L, Chen SX, Jiang XG, Cao JP (2009) Toxoplasma gondii: a simple real time PCR assay to quantify the proliferation of apicoplast. Exp Parasitol 123:384–387

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Thanks Dr. Liu Jie (Institute of Pathogenic biology, Nanhua University, China) for his kindly help in data analysis and Dr. Su Xinzhuan (NIH, USA) for his constructive suggestions in revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Q., Zhang, M., Hong, L. et al. Evaluation of drug effects on Toxoplasma gondii nuclear and plastid DNA replication using real-time PCR. Parasitol Res 106, 1257–1262 (2010). https://doi.org/10.1007/s00436-010-1792-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-010-1792-3

Keywords

Navigation