Skip to main content
Log in

Expression of immune-regulatory genes, arginase-2 and inducible nitric oxide synthase (iNOS), in two rainbow trout (Oncorhynchus mykiss) strains following exposure to Myxobolus cerebralis

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The present endeavor was conducted to evaluate the role of activated macrophage in the susceptibility of two different rainbow trout (Oncorhynchus mykiss) strains, a susceptible American (T) and a more resistant German (H), to infection with Myxobolus cerebralis. Arginase-2 and inducible nitric oxide synthase (iNOS) genes were used as references to the alternative and classical pathway of macrophage activation. The expression level of both genes was measured using quantitative real-time polymerase chain reaction. The expression level of arginase-2 was significantly upregulated in strain T at 2 h and 8 days post exposure in the strain H. In case of iNOS, the expression level was significantly upregulated from 24 h to 8 days p.e. in strain T and only in 8 days p.e. in strain H. During this study also, the influence of nitric oxide (NO) on the viability of the triactinomyxon spores (TAMs) of M. cerebralis was evaluated using the NO-donor S-nitroso-N-acetyl-penicillamine (SNAP). Rising final concentrations of SNAP from 0.25 to 1 mM at 2, 4, and 24 h resulted in increasing numbers of propidium iodide-positive TAMs detected. The results of this study suggest an inability of strain T to react with an effective immune response against infection with M. cerebralis. Furthermore, the TAMs of M. cerebralis react with significant decrease of viable spores to rising concentration of SNAP and longer incubation, but there is also evidence for some resistance to NO activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acosta F, de Galarreta CMR, Ellis AE, Diaz R, Gomez V, Padilla D, Real F (2004) Activation of the nitric oxide response in gilthead seabream after experimental infection with Photobacterium damselae subsp piscicida. Fish Shellfish Immunol 16:581–588

    Article  CAS  PubMed  Google Scholar 

  • Boucher JL, Moali C, Tenu JP (1999) Nitric oxide biosynthesis, nitric oxide synthase inhibitors and arginase competition for l-arginine utilization. Cell Mol Life Sci 55:1015–1028

    Article  CAS  PubMed  Google Scholar 

  • Bridle AR, Morrison RN, Nowak BF (2006) The expression of immune-regulatory genes in rainbow trout, Oncorhynchus mykiss, during amoebic gill disease (AGD). Fish Shellfish Immunol 20:346–364

    Article  CAS  PubMed  Google Scholar 

  • Campos-Pérez JJ, Ellis AE, Secombes CJ (2000) Toxicity of nitric oxide and peroxynitrite to bacterial pathogens of fish. Dis Aquat Org 43:109–115

    Article  PubMed  Google Scholar 

  • Chang CI, Liao JC, Kuo L (1998) Arginase modulates nitric oxide production in activated macrophages. Am J Physiol 274:H342–H348

    CAS  PubMed  Google Scholar 

  • Chevassus B, Dorson M (1990) Genetics of resistance to disease in fishes. Aquaculture 85:83–107

    Article  Google Scholar 

  • Clark IA, Rockett KA (1996) Nitric oxide and parasitic disease. Adv Parasitol 37:1–56

    Article  CAS  PubMed  Google Scholar 

  • da Silva ER, Castilho TM, Pioker FC, Silva C, Floeter-Winter LM (2002) Genomic organisation and transcription characterisation of the gene encoding Leishmania (Leishmania) amazonensis arginase and its protein structure prediction. Int J Parasitol 32:727–737

    Article  PubMed  Google Scholar 

  • Eisenstein TK, Huang D, Meissler JJ, Alramadi B (1994) Macrophage nitric-oxide mediates immunosuppression in infectious inflammation. Immunobiology 191:493–502

    CAS  PubMed  Google Scholar 

  • El-Matbouli M, Meixner M, Mattes M (2003) Susceptibility of Hofer strain of rainbow trout to Myxobolus cerebralis, Yersinia ruckeri, Tetracapsula bryosalmonae and VHS virus. Field and laboratory studies. 9th Annual Whirling Disease Symposium, p 39–40

  • Fiorentino DF, Bond MW, Mosmann TR (1989) Two types of mouse T-helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J Exp Med 170:2081–2095

    Article  CAS  PubMed  Google Scholar 

  • Gilbert MA, Granath WO (2003) Whirling disease of salmonid fish: life cycle, biology, and disease. J Parasitol 89:658–667

    Article  PubMed  Google Scholar 

  • Gobert AP, Daulouede S, Lepoivre M, Boucher JL, Bouteille B, Buguet A, Cespuglio R, Veyret B, Vincendeau P (2000) l-arginine availability modulates local nitric oxide production and parasite killing in experimental trypanosomiasis. Infect and Immun 68:4653–4657

    Article  CAS  Google Scholar 

  • Gonzalez SF, Buchmann K, Nielsen ME (2007) Real-time gene expression analysis in carp (Cyprinus carpio L.) skin: inflammatory responses caused by the ectoparasite Ichthyophthirius multifiliis. Fish Shellfish Immunol 22:641–650

    Article  CAS  PubMed  Google Scholar 

  • Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3:23–35

    Article  CAS  PubMed  Google Scholar 

  • Griffin BR, Davis EM (1978) Myxosoma-cerebralis—detection of circulating antibodies in infected rainbow trout (Salmo gairdneri). J Fish Res Board Can 35:1186–1190

    Google Scholar 

  • Hedrick RP, El-Matbouli M, Adkison MA, MacConnell E (1998) Whirling disease: re-emergence among wild trout. Immunol Rev 166:365–376

    Article  CAS  PubMed  Google Scholar 

  • Hedrick RP, McDowell TS, Gay M, Marty GD, Georgiadis MP, MacConnell E (1999a) Comparative susceptibility of rainbow trout Oncorhynchus mykiss and brown trout Salmo trutta to Myxobolus cerebralis, the cause of salmonid whirling disease. Dis Aquat Org 37:173–183

    Article  CAS  PubMed  Google Scholar 

  • Hedrick RP, McDowell TS, Mukkatira K, Georgiadis MP, MacConnell E (1999b) Susceptibility of selected inland salmonids to experimentally induced infections with Myxobolus cerebralis, the causative agent of whirling disease. J Aquat Anim Health 11:330–339

    Article  Google Scholar 

  • Hedrick RP, McDowell TS, Mukkatira K, Georgiadis MP, MacConnell E (2001) Susceptibility of three species of anadromous salmonids to experimentally induced infectious with Myxobolus cerebralis, the causative agent of whirling disease. J Aquat Anim Health 13:43–50

    Article  Google Scholar 

  • Hedrick RP, McDowell TS, Marty GD, Fosgate GT, Mukkatira K, Myklebust K, El-Matbouli M (2003) Susceptibility of two strains of rainbow trout (one with suspected resistance to whirling disease) to Myxobolus cerebralis infection. Dis Aquat Org 55:37–44

    Article  PubMed  Google Scholar 

  • Hofer B (1903) Über die Drehkrankheit der Regenbogenforelle. Allgemeine Fischerei Zeitung 28:7–8

    Google Scholar 

  • Iniesta V, Carcele J, Molano I, Peixoto PMV, Redondo E, Parra P, Mangas M, Monroy I, Campo ML, Nieto CG, Corraliza I (2005) Arginase I induction during Leishmania major infection mediates the development of disease. Infect Immun 73:6085–6090

    Article  CAS  PubMed  Google Scholar 

  • Jenkinson CP, Grody WW, Cederbaum SD (1996) Comparative properties of arginases. Comp Biochem Physiol B Biochem Mol Biol 114:107–132

    Article  CAS  PubMed  Google Scholar 

  • Joerink M, Forlenza M, Ribeiro CMS, de Vries BJ, Savelkoul HFJ, Wiegertjes GF (2006a) Differential macrophage polarization during parasitic infections in common carp (Cyprinus carpio L.). Fish Shellfish Immunol 21:561–571

    Article  CAS  PubMed  Google Scholar 

  • Joerink M, Savelkoul HFJ, Wiegertjes GF (2006b) Evolutionary conservation of alternative activation of macrophages: structural and functional characterization of arginase 1 and 2 in carp (Cyprinus carpio L.). Mol Immunol 43:1116–1128

    Article  CAS  PubMed  Google Scholar 

  • Laing KJ, Grabowski PS, Belosevic M, Secombes CJ (1996) A partial sequence for nitric oxide synthase from a goldfish (Carassius auratus) macrophage cell line. Immunol and Cell Biol 74:374–379

    Article  CAS  Google Scholar 

  • Laing KJ, Hardie LJ, Aartsen W, Grabowski PS, Secombes CJ (1999) Expression of an inducible nitric oxide synthase gene in rainbow trout Oncorhynchus mykiss. Dev Comp Immunol 23:71–85

    Article  CAS  PubMed  Google Scholar 

  • Lee EH, Kim SM, Kwon SR, Kim SK, Nam YK, Kim KH (2004) Comparison of toxic effects of nitric oxide and peroxynitrite on Uronema marinum (Ciliata: Scuticociliatida). Dis Aquat Org 58:255–260

    Article  CAS  PubMed  Google Scholar 

  • Lindenstrøm T, Secombes CJ, Buchmann K (2004) Expression of immune response genes in rainbow trout skin induced by Gyrodactylus derjavini infections. Vet Immunol Immunopathol 97:137–148

    Article  PubMed  Google Scholar 

  • MacConnell E, Vincent ER (2002) The effects of Myxobolus cerebralis on the salmonid host. Whirling Disease: Rev Curr Topics 29:95–107

    Google Scholar 

  • Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549–555

    Article  CAS  PubMed  Google Scholar 

  • Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25:677–686

    Article  CAS  PubMed  Google Scholar 

  • Markiw ME (1992) Salmonid whirling disease. USFWS, Fish and Wildlife Leaflet 17:1–11

    Google Scholar 

  • Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM (2000) M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 164:6166–6173

    CAS  PubMed  Google Scholar 

  • Mori M, Gotoh T (2000) Regulation of nitric oxide production by arginine metabolic enzymes. Biochem Biophy Res Commun 275:715–719

    Article  CAS  Google Scholar 

  • Morris SM, Kepka-Lenhart D, Chen LC (1998) Differential regulation of arginases and inducible nitric oxide synthase in murine macrophage cells. Am J Physiol- 275:E740–E747

    PubMed  Google Scholar 

  • Nathan C (1992) Nitric-oxide as a secretory product of mammalian-cells. Faseb J 6:3051–3064

    CAS  PubMed  Google Scholar 

  • Nathan C, Shiloh MU (2000) Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci USA 97:8841–8848

    Article  CAS  PubMed  Google Scholar 

  • Nehring RB, Walker PG (1996) Whirling disease in the wild: the new reality in the intermountain West. Fisheries 21:28–30

    Google Scholar 

  • Neumann NF, Fagan D, Belosevic M (1995) Macrophage activating factor(s) secreted by mitogen stimulated goldfish kidney leukocytes synergize with bacterial lipopolysaccharide to induce nitric oxide production in teleost macrophages. Develop Comp Immunol 19:473–482

    Article  CAS  Google Scholar 

  • Noel W, Raes G, Ghassabeh GH, De Baetselier P, Beschin A (2004) Alternatively activated macrophages during parasite infections. Trends Parasitol 20:126–133

    Article  CAS  PubMed  Google Scholar 

  • O’Grodnick JJ (1979) Susceptibility of various salmonids to whirling disease (Myxosoma-cerebralis). Trans Am Fish Soc 108:187–190

    Article  Google Scholar 

  • Ryce EKN, Zale AV, MacConnell E, Nelson M (2005) Effects of fish age versus size on the development of whirling disease in rainbow trout. Dis Aquat Org 63:69–76

    Article  PubMed  Google Scholar 

  • Saeij JPJ, Stet RJM, Groeneveld A, Verburg-van Kemenade LBM, van Muiswinkel WB, Wiegertjes GF (2000) Molecular and functional characterization of a fish inducible-type nitric oxide synthase. Immunogenetics 51:339–346

    Article  CAS  PubMed  Google Scholar 

  • Saeij JPJ, Van Muiswinkel WB, Groeneveld A, Wiegertjes GF (2002) Immune modulation by fish kinetoplastid parasites: a role for nitric oxide. Parasitology 124:77–86

    Article  CAS  PubMed  Google Scholar 

  • Sandor M, Weinstock JV, Wynn TA (2003) Granulomas in schistosome and mycobacterial infections: a model of local immune responses. Trends Immunol 24:44–52

    Article  CAS  PubMed  Google Scholar 

  • Sigh J, Lindenstrøm T, Buchmann K (2004) The parasitic ciliate Ichthyophthirius multifiliis induces expression of immune relevant genes in rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis 27:409–417

    Article  CAS  PubMed  Google Scholar 

  • Tafalla C, Coll J, Secombes CJ (2005) Expression of genes related to the early immune response in rainbow trout (Oncorhynchus mykiss) after viral haemorrhagic septicemia virus (VHSV) infection. Dev Comp Immunol 29:615–626

    Article  CAS  PubMed  Google Scholar 

  • Tenu JP, Lepoivre M, Moali C, Brollo M, Mansuy D, Boucher JL (1999) Effects of the new arginase inhibitor N omega-hydroxy-nor-l-arginine on NO synthase activity in murine macrophages. Nitric Oxide 3:427–438

    Article  CAS  PubMed  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalisation of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Gen Biol Res. doi:0034.0031-0034.0011

    Google Scholar 

  • Villamil L, Gómez-Léon J, Gómez-Chiarri M (2007) Role of nitric oxide in the defenses of Crassostrea virginica to experimental infection with the protozoan parasite Perkinsus marinus. Dev Comp Immunol 31:968–977

    Article  CAS  PubMed  Google Scholar 

  • Vincendeau P, Gobert AP, Daulouede S, Moynet D, Mossalayi MD (2003) Arginases in parasitic diseases. Trends Parasitol 19:9–12

    Article  CAS  PubMed  Google Scholar 

  • Vincent ER (1996) Whirling disease and wild trout: the Montana experience. Fisheries 21:32–33

    Google Scholar 

  • Wagner EJ, Smith M, Arndt R, Roberts DW (2003) Physical and chemical effects on viability of the Myxobolus cerebralis triactinomyxon. Dis Aquat Org 53:133–142

    Article  PubMed  Google Scholar 

  • Wiegertjes GF, Joerink M (2004) Macrophage polarization in the immune response to parasites. Bull Eur Ass Fish Pathol 24:5–10

    Google Scholar 

  • Wu GY, Morris SM (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17

    CAS  PubMed  Google Scholar 

  • Yu H, Iyer RK, Kern RM, Rodriguez WI, Grody WW, Cederbaum SD (2001) Expression of arginase isozymes in mouse brain. J Neurosci Res 66:406–422

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was carried out in the course of a research project funded by a grant from the Deutsche Forschungsgemeinschaft (DFG, EL-174/3-1). Statistical advice was kindly provided by S. Shirakashi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansour El-Matbouli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Severin, V.I.C., Soliman, H. & El-Matbouli, M. Expression of immune-regulatory genes, arginase-2 and inducible nitric oxide synthase (iNOS), in two rainbow trout (Oncorhynchus mykiss) strains following exposure to Myxobolus cerebralis . Parasitol Res 106, 325–334 (2010). https://doi.org/10.1007/s00436-009-1661-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-009-1661-0

Keywords

Navigation