Parasitology Research

, Volume 106, Issue 1, pp 207–212 | Cite as

Insecticidal activity of essential oils from native medicinal plants of Central Argentina against the house fly, Musca domestica (L.)

  • Sara M. Palacios
  • Alberto Bertoni
  • Yanina Rossi
  • Rocío Santander
  • Alejandro Urzúa
Original Paper

Abstract

The insecticidal activity of nine essential oils (EOs) against the house fly (Musca domestica) was evaluated by placing flies in a screw-cap glass jar holding a piece of EO-treated cotton yarn. The dose necessary to kill 50% of flies (LC50) in 30 min was determined at 26 ± 1°C. The EOs showed LC50 values ranging from 0.5 to 46.9 mg/dm3. The EO from Minthostachys verticillata was the most potent insecticide (LC50 = 0.5 mg/dm3) followed by EOs from Hedeoma multiflora (LC50 = 1.3 mg/dm3) and Artemisia annua (LC50 = 6.5 mg/dm3). The compositions of the nine EOs, obtained by hydrodistillation of medicinal herbs, were analyzed by gas chromatography/mass spectroscopy. These analyses showed that (4R)(+)-pulegone (69.70%), menthone (12.17%), and limonene (2.75%) were the principal components of M. verticillata EO. (4R)(+)-pulegone was also the main constituent (52.80%) of H. multiflora, while artemisia ketone (22.36%) and 1,8-cineole (16.67%) were the major constituents of A. annua EO. The terpene (4R)(+)-pulegone showed a lower toxicity (LC50 = 1.7 mg/dm3) than M. verticillata or H. multiflora EOs. Dimethyl 2,2-dichlorovinyl phosphate, selected as a positive control, showed an LC50 of 0.5 mg/dm3. EOs from M. verticillata and H. multiflora show promise as natural insecticides against houseflies.

Keywords

Limonene Musca Domestica Artemisia Annua DDVP Menthone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Financial support for this work was provided by the Agencia Nacional de Promoción Científica y Técnica, FONCYT, PICT 33593. We thank Joss Heywood for revising the English language.

References

  1. Acevedo GR, Zapater M, Toloza AC (2009) Insecticide resistance of house fly, Musca domestica (L.) from Argentina. Parasitol Res 105:489–493CrossRefPubMedGoogle Scholar
  2. Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils - a review. Food Chem Toxicol 46:446–475CrossRefPubMedGoogle Scholar
  3. Batish RB, Harminder PS, Ravinder KK, Shalinder K (2008) Eucalyptus essential oil as a natural pesticide. Forest Ecol Manage 256:2166–2174CrossRefGoogle Scholar
  4. Bidawid SP, Edeson JFB, Ibrahim J, Matossian RM (1978) The role of non-biting flies in the transmission of enteric pathogens (Salmonella species and Shigella species) in Beirut, Lebanon. Ann Trop Med Parasitol 72:117–121PubMedGoogle Scholar
  5. Bustos JA, Bonino EE (2005) Cosecha silvestre de peperina (Minthosthachys mollis) en Córdoba, Argentina: implicancias socioeconómicas. Rev Iberoam Econ Ecol 2:45–55Google Scholar
  6. Carvajal G, Thilly W (1988) Mutagenic activity of Minthostachys mollis in AHH1 lymphoblast cells. Plant Food Hum Nutr 38:105–114CrossRefGoogle Scholar
  7. Coats J, Karr L, Drewes C (1991) Toxicity and neurotoxic effects of monoterpenoids in insects and earthworms. In: Hedin PA (ed) Naturally occurring pest bioregulators. ACS, Washington, D.C., pp 306–316 Symposium Series no. 449Google Scholar
  8. Dorman HJD, Deans SG (2000) Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 88:308–316CrossRefPubMedGoogle Scholar
  9. Echeverria P, Harrison BA, Tirapat C, McFarland A (1983) Flies as a source of enteric pathogens in a rural village in Thailand. Appl Environ Microbiol 46:32–36PubMedGoogle Scholar
  10. Enan E (2001) Insecticidal activity of essential oils: octopaminergic sites of action. Comp Biochem Physiol C Toxicol Pharmacol 130:325–337CrossRefPubMedGoogle Scholar
  11. Ferrer A (2003) Pesticide poisoning. Anal Sis San Navarra 26:155–171Google Scholar
  12. Förster M, Klimpel S, Mehlhorn H, Sievert K, Messler S, Pfeffer K (2007) Pilot studies on synantropic flies (e.g. Musca, Sarcophaga, Calliphora, Fania, Lucilia, Stomoxys) as vectors of pathogenic microorganisms. Parasitol Res 101:243–246CrossRefPubMedGoogle Scholar
  13. Fukushima H, Ito Y, Saito K, Tsubokura M, Otsuki K (1979) Role of the fly in the transport of Yersinia enterocolitica. Appl Environ Microbiol 38:1009–1010PubMedGoogle Scholar
  14. Goleniowski ME, Bongiovanni GA, Palacio L, Nuñez CO, Cantero JJ (2006) Medicinal plants from the “Sierra de Comechingones”, Argentina. J Ethnopharm 107:324–341CrossRefGoogle Scholar
  15. Graczyk T, Knight R, Gilman R, Cranfield M (2001) The role of non-biting flies in the epidemiology of human infectious diseases. Microbes Infect 3:231–235CrossRefPubMedGoogle Scholar
  16. Graham JP, Price LB, Evans SL, Graczyk TK, Silbergeld EK (2009) Antibiotic resistant enterococci and staphylococci isolated from flies collected near confined poultry feeding operations. Sci Total Environ 407:2701–2710CrossRefPubMedGoogle Scholar
  17. Grundy DL, Still CC (1985) Inhibition of acetylcholinesterases by pulegone-1, 2-epoxide. Pest Biochem Physiol 23:383–388CrossRefGoogle Scholar
  18. Hammond G, Fernández I, Villegas L, Vaisberg A (1998) A survey of traditional medicinal plants from the Callejón de Huaylas, Department of Ancash, Perú. J Ethnopharm 61:17–30CrossRefGoogle Scholar
  19. Isman MB (1999) Pesticides based on plant essential oils. Pestic Pest Outlook 10:68–72Google Scholar
  20. Isman MB (2000) Plant essential oils for pest and disease management. Crop Protect 19:603–608CrossRefGoogle Scholar
  21. Isman MB (2006) Botanical Insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51:45–6CrossRefPubMedGoogle Scholar
  22. Isman MB, Machial CM (2006) Pesticides based on plant essential oils: from traditional practice to commercialization. In: Rai M, Carpinella MC (eds) Naturally occurring bioactive compounds, vol 3, 1st edn. Elsevier, Amsterdam, pp 29–44Google Scholar
  23. Keane S, Ryan MF (1999) Purification, characterization, and inhibition by monoterpenes of acetylcholinsterase from the waxmoth, Galleria mellonella (L). Insect Biochem Mol Biol 29:1097–1104CrossRefGoogle Scholar
  24. Khan AR, Huq F (1978) Disease agents carried by flies in Dacca city. Bangladesh Med Res Counc Bull 4:86–93PubMedGoogle Scholar
  25. Kostyukovsky M, Rafaeli A, Gileadi C, Demchenko N, Shaaya E (2002) Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: possible mode of action against insect pests. Pest Manag Sci 58:1101–1106CrossRefPubMedGoogle Scholar
  26. Lee S, Tsao R, Peterson C, Coats JR (1997) Insecticidal activity of monoterpenoids to western corn rootworm (Coleoptera: Chrysomelidae), twospotted spider mite (Acari: Tetranychidae), and housefly (Diptera: Muscidae). J Econ Entomol 90:883–892PubMedGoogle Scholar
  27. Maggi ME, Mangeaud A, Carpinella MC, Ferrayoli CG, Valladares GR, Palacios SM (2005) Laboratory evaluation of Artemisia annua L. extract and artemisinin activity against Epilachna paenulata and Spodoptera eridania. J Chem Ecol 31:1527–1536CrossRefPubMedGoogle Scholar
  28. Malik A, Singh N, Satya S (2007) House Fly (Musca domestica): a review of control strategies for a challenging pest. J Environ Sci Health Part B 42:453–469CrossRefGoogle Scholar
  29. Mills C, Cleary BJ, Gilmer JF, Walsh JJ (2004) Inhibition of acetylcholinesterase by Tea Tree oil. J Pharm Pharmacol 56:375–379CrossRefPubMedGoogle Scholar
  30. Misra G, Pavlostathis SG (1997) Biodegradation kinetics of monoterpenes in liquid and in soil-slurry system. Appl Microbiol Biotechnol 47:572–577CrossRefGoogle Scholar
  31. Miyazawa M, Watanabe H, Kameoka H (1997) Inhibition of acetylcholinesterase activity by monoterpenoids with a p-menthane skeleton. J Agric Food Chem 45:677–679CrossRefGoogle Scholar
  32. Olsen AR (1998) Regulatory action criteria for filth and other extraneous materials. III. Review of flies and foodborne enteric diseases. Regul Toxicol Pharmacol 28:199–211CrossRefPubMedGoogle Scholar
  33. Ozden S, Catalgol B, Gezginci-Oktayoglu S, Arda-Pirincci P, Bolkent S, Alpertunga B (2009) Methiocarb-induced oxidative damage following subacute exposure and the protective effects of vitamin E and taurine in rats. Food Chem Toxicol 47:1676–1684CrossRefPubMedGoogle Scholar
  34. Palacios SM, Bertoni A, Rossi Y, Santander R, Urzúa A (2009) Efficacy of essential oils from edible plants as insecticides against the house fly, Musca domestica L. Molecules 14:1938–1947CrossRefPubMedGoogle Scholar
  35. Pavela (2008) Insecticidal properties of several essential oils to the House Fly (Musca domestica L.). Phytother Res 22:274–278CrossRefPubMedGoogle Scholar
  36. Picollo MI, Toloza AC, Cueto GM, Zygadlo J, Zerba E (2008) Anticholinesterase and pediculicidal activities of monoterpenoids. Fitoterapia 79:271–278CrossRefPubMedGoogle Scholar
  37. Priestley CM, Williamson EM, Wafford K, Satelle D (2003) Thymol, a constituent of thyme essential oil, is a positive allosteric modulator of human GABAA receptors and a homo-oligomeric GABA receptor from Drosophila melanogaster. Br J Pharmacol 140:1363–1372CrossRefPubMedGoogle Scholar
  38. Regnault-Roger C (1997) The potential of botanical essential oils for insect pest control. Integr Pest Manag Rev 2:25–34CrossRefGoogle Scholar
  39. Rice PJ, Coats JR (1994a) Insecticidal properties of several monoterpenoids to the house fly (Diptera: Muscidae), red flour beetle (Coleoptera: Tenebrionidae) and southern corn rootworm (Coleoptera: Chrysomelidae). J Econ Entomol 87:1172–1179Google Scholar
  40. Rice PJ, Coats JR (1994b) Insecticidal properties of monoterpenoids derivatives to the house fly (Diptera: Muscidae), and red flour beetle (Coleoptera: Tenebrionidae). Pestic Sci 41:195–202CrossRefGoogle Scholar
  41. Ryan MF, Byrne O (1988) Plant insect coevolution and inhibition of acetylcolinesterase. J Chem Ecol 14:1965–1975CrossRefGoogle Scholar
  42. Schmidt-Lebuhn AN (2008) Ethnobotany, biochemistry and pharmacology of Minthostachys (Lamiaceae). J Ethnopharmacol 118:343–353CrossRefPubMedGoogle Scholar
  43. Scott JG, Alefantis TG, Kaufman PE, Rutz DA (2000) Insecticide resistance in houseflies from caged-layer poultry facilities. Pest Manag Sci 56:147–153CrossRefGoogle Scholar
  44. Stroh J, Wan MT, Isman MB, Moul DJ (1998) Evaluation of the acute toxicity to juvenile Pacific coho salmon and rainbow trout of some plant essential oils, a formulated product, and the carrier. Bull Environ Contam Toxicol 60:923–930CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Sara M. Palacios
    • 1
  • Alberto Bertoni
    • 1
  • Yanina Rossi
    • 1
  • Rocío Santander
    • 2
  • Alejandro Urzúa
    • 2
  1. 1.Laboratorio de Química Fina y Productos NaturalesUniversidad Católica de CórdobaCórdobaArgentina
  2. 2.Departamento de Ciencias del Ambiente, Facultad de Química y BiologíaUniversidad de Santiago de ChileSantiagoChile

Personalised recommendations