The ubiquitin–proteasome system in Strongyloididae. Biochemical evidence for developmentally regulated proteolysis in Strongyloides venezuelensis


Nematode parasites from the genus Strongyloides spp. are important pathogens of the intestinal mucosa of animals and humans. Their complex life cycles involve alternating developmental adaptations between larvae stages and the adult parthenogenetic female. Here, we report, primarily through homology-based searching, the existence of the major components of the ubiquitin–proteasome system in this genus, using the available EST data from S. ratti, S. stercoralis, and Parastrongyloides trichosuri. In this study, S. venezuelensis was used as our model organism for detection of proteasome activity and ubiquitinated substrates in cytosolic preparations from the L3 larvae and the adult female. Marked differences in proteasome capabilities were found when these two stages were compared. A preference for degradation of chymotryptic synthetic peptides was found in both stages with the adult exhibiting a higher rate of hydrolysis compared to the larvae. Due to the high evolutionary conservation of proteasome alpha subunits, an anti-human proteasome antibody was able to recognize proteasome subunits in these preparations by Western blotting, supporting the proposal that the activity of the ubiqutin–proteasome system is developmentally regulated in this nematode.

This is a preview of subscription content, access via your institution.

Fig. 1



Dimethyl sulfoxide


Expressed sequence tags


Phosphate-buffered saline




One-dimensional gel electrophoresis


Two-dimensional gel electrophoresis


5-Bromo-4-chloro-3′-indolyphosphate p-toluidine salt


Nitro-blue tetrazolium chloride


  1. Anonymous (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012–2018

    Article  Google Scholar 

  2. Baumeister W, Walz J, Zuhl F, Seemuller E (1998) The proteasome: paradigm of a self-compartmentalizing protease. Cell 92:367–380

    Article  CAS  PubMed  Google Scholar 

  3. Borissenko L, Groll M (2007) 20S proteasome and its inhibitors: crystallographic knowledge for drug development. Chem Rev 107:687–717

    Article  CAS  PubMed  Google Scholar 

  4. Bowerman B, Kurz T (2006) Degrade to create: developmental requirements for ubiquitin-mediated proteolysis during early Caenorhabditis elegans embryogenesis. Development 133:773–784

    Article  CAS  PubMed  Google Scholar 

  5. Castro-Borges W, Cartwright J, Ashton PD, Braschi S, Guerra Sa R, Rodrigues V, Wilson RA, Curwen RS (2007) The 20S proteasome of Schistosoma mansoni: a proteomic analysis. Proteomics 7:1065–1075

    Article  CAS  PubMed  Google Scholar 

  6. Chen P, Hochstrasser M (1996) Autocatalytic subunit processing couples active site formation in the 20S proteasome to completion of assembly. Cell 86:961–972

    Article  CAS  PubMed  Google Scholar 

  7. Davy A, Bello P, Thierry-Mieg N, Vaglio P, Hitti J, Doucette-Stamm L, Thierry-Mieg D, Reboul J, Boulton S, Walhout AJ, Coux O, Vidal M (2001) A protein–protein interaction map of the Caenorhabditis elegans 26S proteasome. EMBO Rep 2:821–828

    Article  CAS  PubMed  Google Scholar 

  8. Dorris M, Viney ME, Blaxter ML (2002) Molecular phylogenetic analysis of the genus Strongyloides and related nematodes. Int J Parasitol 32:1507–1517

    Article  CAS  PubMed  Google Scholar 

  9. Glickman MH, Ciechanover A (2002) The ubiquitin–proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82:373–428

    CAS  PubMed  Google Scholar 

  10. Gonzalez J, Bai G, Frevert U, Corey EJ, Eichinger D (1999) Proteasome-dependent cyst formation and stage-specific ubiquitin mRNA accumulation in Entamoeba invadens. Eur J Biochem 264:897–904

    Article  CAS  PubMed  Google Scholar 

  11. Grove DI (1996) Human strongyloidiasis. Adv Parasitol 38:251–309

    Article  CAS  PubMed  Google Scholar 

  12. Guerra-Sa R, Castro-Borges W, Evangelista EA, Kettelhut IC, Rodrigues V (2005) Schistosoma mansoni: functional proteasomes are required for development in the vertebrate host. Exp Parasitol 109:228–236

    Article  CAS  PubMed  Google Scholar 

  13. Heinemeyer W, Fischer M, Krimmer T, Stachon U, Wolf DH (1997) The active sites of the eukaryotic 20S proteasome and their involvement in subunit precursor processing. J Biol Chem 272:25200–25209

    Article  CAS  PubMed  Google Scholar 

  14. Hendil KB, Kristensen P, Uerkvitz W (1995) Human proteasomes analysed with monoclonal antibodies. Biochem J 305:245–252

    CAS  PubMed  Google Scholar 

  15. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  CAS  PubMed  Google Scholar 

  16. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  17. Li Z, Wang CC (2002) Functional characterization of the 11 non-ATPase subunit proteins in the trypanosome 19S proteasomal regulatory complex. J Biol Chem 277:42686–42693

    Article  CAS  PubMed  Google Scholar 

  18. Lok JB (2007) Strongyloides stercoralis: a model for translational research on parasitic nematode biology. WormBook 1–18

  19. Lowry O, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  20. Nisbet AJ, Gasser RB (2004) Profiling of gender-specific gene expression for Trichostrongylus vitrinus (Nematoda: Strongylida) by microarray analysis of expressed sequence tag libraries constructed by suppressive-subtractive hybridisation. Int J Parasitol 34(5):633–643

    Article  CAS  PubMed  Google Scholar 

  21. Paugam A, Bulteau AL, Dupouy-Camet J, Creuzet C, Friguet B (2003) Characterization and role of protozoan parasite proteasomes. Trends Parasitol 19:55–59

    Article  CAS  PubMed  Google Scholar 

  22. Pickart CM (2001) Mechanisms underlying ubiquitination. Annu Rev Biochem 70:503–533

    Article  CAS  PubMed  Google Scholar 

  23. Pickart CM, Eddins MJ (2004) Ubiquitin: structures functions mechanisms. Biochim Biophys Acta 1695:55–72

    Article  CAS  PubMed  Google Scholar 

  24. Schmidt M, Hanna J, Elsasser S, Finley D (2005) Proteasome-associated proteins: regulation of a proteolytic machine. Biol Chem 386:725–737

    Article  CAS  PubMed  Google Scholar 

  25. Silva-Jardim I, Horta MF, Ramalho-Pinto FJ (2004) The Leishmania chagasi proteasome: role in promastigotes growth and amastigotes survival within murine macrophages. Acta Trop 91:121–130

    Article  CAS  PubMed  Google Scholar 

  26. Takahashi M, Iwasaki H, Inoue H, Takahashi K (2002) Reverse genetic analysis of the Caenorhabditis elegans 26S proteasome subunits by RNA interference. Biol Chem 383:1263–1266

    Article  CAS  PubMed  Google Scholar 

  27. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  Google Scholar 

  28. Thompson FJ, Mitreva M, Barker GL, Martin J, Waterston RH, McCarter JP, Viney ME (2005) An expressed sequence tag analysis of the life-cycle of the parasitic nematode Strongyloides ratti. Mol Biochem Parasitol 142:32–46

    Article  PubMed  Google Scholar 

  29. Tsuji N, Fujisaki K (1994) Development in vitro of free-living infective larvae to the parasitic stage of Strongyloides venezuelensis by temperature shift. Parasitology 109(Pt 5):643–648

    Article  PubMed  Google Scholar 

  30. Tsuji N, Kawazu S, Nakamura Y, Fujisaki K (1993) Protein analysis of Strongyloides venezuelensis by two-dimensional polyacrylamide gel electrophoresis. J Vet Med Sci 55:881–883

    CAS  PubMed  Google Scholar 

  31. Verma R, Chen S, Feldman R, Schieltz D, Yates J, Dohmen J, Deshaies RJ (2000) Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol Biol Cell 11:3425–3439

    CAS  PubMed  Google Scholar 

  32. Viney ME (1994) A genetic analysis of reproduction in Strongyloides ratti. Parasitology 109:511–515

    Article  PubMed  Google Scholar 

  33. Viney ME (2006) The biology and genomics of Strongyloides. Med Microbiol Immunol 195:49–54

    Article  CAS  PubMed  Google Scholar 

  34. Viney ME, Lok JB (2007) Strongyloides spp. WormBook 1–15

  35. Walters KJ, Goh AM, Wang Q, Wagner G, Howley PM (2004) Ubiquitin family proteins and their relationship to the proteasome: a structural perspective. Biochim Biophys Acta 169:73–87

    Google Scholar 

  36. Wolf DH, Hilt W (2004) The proteasome: a proteolytic nanomachine of cell regulation and waste disposal. Biochim Biophys Acta 1695:19–31

    Article  CAS  PubMed  Google Scholar 

Download references


This work was sponsored by the Conselho Nacional de Pesquisa e Desenvolvimento (CNPq). The authors thank Joao B. A de Oliveira (Unicamp—SP) for his expertise with parasite production and maintenance.

Author information



Corresponding author

Correspondence to Fabiana M. de Paula.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

de Paula, F.M., Castro-Borges, W., Júnior, O.S.P. et al. The ubiquitin–proteasome system in Strongyloididae. Biochemical evidence for developmentally regulated proteolysis in Strongyloides venezuelensis . Parasitol Res 105, 567 (2009).

Download citation


  • Parasitic Nematode
  • Proteasome Activity
  • Proteasome Pathway
  • Antibody Binding Site
  • Parthenogenetic Female