Skip to main content
Log in

Biochemical characterization of deltamethrin resistance in a laboratory-selected strain of Aedes aegypti

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

A resistant strain (DR) of Aedes aegypti, generated by deltamethrin selection for 20 consecutive generations from a laboratory susceptible strain (DS) was studied for the possible resistant mechanisms. The pyrethroid resistance developed was characterized by biochemical assays and native polyacrylamide gel electrophoresis. Significant elevation in the activity of α- and β-esterases, glucose-6-phosphate dehydrogenase (G6PD), CYTP450 (CYTP450), and glutathione-s-transferase (GST) were noticed in DR. The gel profiles for esterases, G6PD, and CYTP450 were different in DR as compared to DS strain. The difference was either in the form of additional bands or increased intensity of the bands or both. Gel profile variations were also evident from densitometry. Our study suggests that these enzymes play an important role in deltamethrin resistance in the DR strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Brengues C, Hawkes NJ, Chandre F, McCarroll L, Duchon S, Guillet P, Manguin S, Morgan JC, Hemingway J (2003) Pyrethroid and DDT cross-resistance in Aedes aegypti correlated with novel mutations in the voltage-gated sodium channel gene. Med Vet Entomol 17:87–94

    Article  CAS  PubMed  Google Scholar 

  • Chareonviriyaphap T, Rongnoparut P, Chantarumporn P Bangs MJ (2003) Biochemical detection of pyrethroid resistance mechanisms in Anopheles minimus in Thailand. J Vect Ecol 28:108–116

    Google Scholar 

  • Corbel V, N’Guessan R, Brengues C, Chandre F, Djogbenou L, Martin T, Akogbeto M, Hougard JM, Rowland M (2007) Multiple insecticide resistance mechanisms in Anopheles gambiae and Culex quinquefasciatus from Benin, West Africa. Acta Tropica 101:207–216

    Article  CAS  PubMed  Google Scholar 

  • Cui F, Raymond M, Qiao CL (2006) Insecticide resistance in vector mosquitoes in china. Pest Manag Sci 62:1013–1022

    Article  CAS  PubMed  Google Scholar 

  • Denholm I, Devine GJ, Williamson MS (2002) Evolutionary genetics. Insecticide resistance on the move. Science 297:2222–2223

    Article  CAS  PubMed  Google Scholar 

  • Flores AE, Albeldano-Vazquez W, Salas IF, Badii MH, Becerra HL, Garcia GP, Fuentes SL, Brogdon WG, Black WC IV, Beaty B (2005) Elevated a-esterase levels associated with permethrin tolerance in Aedes aegypti (L.) from Baja California, Mexico. Pestic Biochem Physiol 82:66–78

    Article  CAS  Google Scholar 

  • Ganesh KN, Vijayan VA, Urmila J, Gopalan N, Shri Prakash S (2002) Role of esterases and monooxygenases in the deltamethrin resistance in Anopheles stephensi at Mysore. Indian J Exp Biol 40:583–588

    CAS  PubMed  Google Scholar 

  • Gaven B, Duguet J Singerge G (1986) Compared induction and reversion of the resistance of Culex pipiens larvae raised with pressure of selection to deltamethrin alone and deltamethrin plus piperonyl butoxide., Ive Congress Sur la Protection de la Sante Humaine et des. Cultures en milieu Tropical Marscille 2–4

  • Grant DF, Matsumura F (1989) Glutathione S-transferase 1 and 2 in susceptible and insecticide resistant Aedes aegypti. Pestic Biochem Physiol 33:132–143

    Article  CAS  Google Scholar 

  • Grant DF, Bender DM, Hammock BD (1989) Quantitative kinetic assays for glutathione S-transferase and general esterase in individual mosquitoes using an EIA reader. Insect Biochem 19:741–51

    Article  CAS  Google Scholar 

  • Hardstone MC, Leichter C, Harrington LC, Kasai S, Tomita T, Scott JG (2007) Cytochrome P450 monooxygenase-mediated permethrin resistance confers limited and larval specific cross-resistance in the southern house mosquito, Culex pipiens quinquefasciatus. Pestic Biochem Physiol 89:175–184

    Article  CAS  Google Scholar 

  • Hemingway J, Hawkes NJ, McCarrol L, Ranson H (2004) The molecular basis of insecticide resistance in mosquitoes. Insect Biochem Mol Biol 34:653–665

    Article  CAS  PubMed  Google Scholar 

  • Kasai S, Weerashinghe IS, Shono T (1998) P450 monooxygenases are an important mechanism of permethrin resistance in Culex quinquefasciatus Say larvae. Arch Insect Biochem Physiol 37:47–56

    Article  CAS  Google Scholar 

  • Kasai S, Weerashinghe IS, Shono T, Yamagawa M (2000) Molecular cloning, nucleotide sequence and gene expression of a cytochrome P450 (CYP6F1) from the pyrethroid resistant mosquito, Culex quinquefasciatus Say. Insect Biochem Mol Biol 30:163–171

    Article  CAS  PubMed  Google Scholar 

  • Kasai S, Mihara M, Takahashi M, Agui N, Tomita T (2003) Rapid evaluation of human lice susceptibility to phenothrin. Med Entomol Zool 54:31–36

    CAS  Google Scholar 

  • Kostaropoulos I, Papadopoulos AI, Metaxakis A, Boukouvala E, Papadopoulou-Mourkidou E (2001) Glutathione-s-transferase in the defence against pyrethroids in insects. Insect Biochem Molec Biol 31:313–319

    Article  CAS  Google Scholar 

  • Kumar S, Thomas A, Pillai MKK (1991) Involvement of monooxygenases as a major mechanism of deltamethrin resistance in larvae of three species of mosquitoes. Indian J Exp Biol 29:379–84

    CAS  PubMed  Google Scholar 

  • Lee CY, Hemingway J, Yap HH, Chong NL (2000) Biochemical charecterisation of insecticide resistance in the German cockroach, Blattella germanica, from Malaysia. Med Vet Entomol 14:11–18

    Article  CAS  PubMed  Google Scholar 

  • Lopez-soler N, Cervera A, Moores GD, Martnez-Pardo R, Garcera MD (2008) Esterase isoenzymes and insecticide resistance in Frankliniella occidentalis populations from the south-east region of Spain. Pest Manag Sci 64:1258–1266. doi:10.1002/ps.1627

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Nauen R (2007) Insecticide resistance in disease vectors of public health importance. Pest Manag Sci 63:628–633

    Article  CAS  PubMed  Google Scholar 

  • Penilla PR, Rodriguez AD, Hemingway J, Torres JL, Arrendondo-jiminez JI, Rodriguez MH (1998) Resistance management strategies in malaria mosquito control, baseline data for a large-scale field trial against Anopheles albimanus in Mexico. Med Vet Entomol 12:217–233

    Article  CAS  PubMed  Google Scholar 

  • Pethuan PS, Jirakanjanakit N, Saengtharatip S, Chareonviriyaphap T, Kaewpa D, Rongnoparut P (2007) Biochemical studies of insecticide resistance in Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus (Diptera: Culicidae) in Thailand. Top Biomed 24:7–15

    CAS  Google Scholar 

  • Prapanthadhara L, Promtet N, Koottathep S, Somboon P, Suwonkerd W, McCarroll L, Hemingway J (2002) Mechanisms of DDT and permethrin resistance in Aedes aegypti from Chiang Mai, Thailand. Dengue Bull 26:185–189

    Google Scholar 

  • Shono T, Ohsawa K, Casida JE (1979) Metabolism of trans and cis-permethrin, trans and cis cypermethrin and decamethrin by microsomal enzymes. J Agri Food Chem 27:316–325

    Article  CAS  Google Scholar 

  • Sobotka W, Styczynska B (1991) Review of the methods of control of pathogenic arthropods of medical and veterinary importance. Wiad Parazytol 37:167–171

    CAS  PubMed  Google Scholar 

  • Suwanchaichinda C, Brattsten LB (2002) Induction of microsomal cytochrome P450s by tire-leachate compounds, habitat components of Aedes albopictus mosquito larvae. Arch Insect Biochem Physiol 49:71–79

    Article  CAS  PubMed  Google Scholar 

  • Vais H, Williamson MS, Devonshire AL, Usherwood PNR (2001) The molecular interactions of pyrethroid insecticides with insect and mammalian sodium channels. Pest Manag Sci 57:877–888

    Article  CAS  PubMed  Google Scholar 

  • Vaughan A, Hemingway J (1995) Mosquito carboxylesterase Est alpha 2(1) (A2). Cloning and sequence of the full-length cDNA for a major insecticide resistance gene worldwide in the mosquito Culex quinquefasciatus. J Biol Chem 270:17044–17049

    Article  CAS  PubMed  Google Scholar 

  • Vontas JG, Small GJ, Hemingway J (2001) Glutathione-s-transferase as antioxidant defence agent for pyrethroid resistance in Nilaparvata lugens. Biochem J 357:65–72

    Article  CAS  PubMed  Google Scholar 

  • Vulule JM, Beach RF, Atieli FK, McAllister JC, Brogdon WG, Roberts JM, Mwangi RW, Hawley WA (1999) Elevated oxidase and esterase levels, associated with permethrin tolerance in Anopheles gambiae from Kenyan villages using permethrin-impregnated nets. Med Vet Entomol 13:239–244

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Liu H, Zhang L, Liu N (2005) Resistance in the mosquito, Culex quinquefasciatus and possible mechanisms for resistance. Pest Manag Sci 61:1096–1102

    Article  CAS  PubMed  Google Scholar 

  • Yaicharoen R, Kiatfuengfoo R, Chareonviriyaphap T, Rongnopaurt P (2005) Charecterisation of deltamethrin resistance in field samples of Aedes aegypti in Thailand. J Vect Biol 30:144–150

    Google Scholar 

  • Yu SJ, Nguyen SN (1996) Insecticide susceptibility and detoxication enzyme activities in permethrin selected diamondback moths. Pestic Biochem Physiol 56:69–77

    Article  CAS  Google Scholar 

  • Zhang L, Gao X, Liang P (2007) Beta-cypermethrin resistance associated with high carboxylesterase activities in a strain of house fly, Musca domestica (Diptera: Culicidae). Pestic Biochem Physiol 89:65–72

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors are thankful to the Department of studies in Zoology, University of Mysore, Mysore for providing all the facilities to conduct this research work. One of the authors is thankful to the Council of Scientific and Industrial Research (CSIR), India for the financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urmila Jagadeshwaran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jagadeshwaran, U., Vijayan, V.A. Biochemical characterization of deltamethrin resistance in a laboratory-selected strain of Aedes aegypti . Parasitol Res 104, 1431–1438 (2009). https://doi.org/10.1007/s00436-009-1342-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-009-1342-z

Keywords

Navigation