Skip to main content

Which factors regulate the reproduction of ectoparasites of temperate-zone cave-dwelling bats?

Abstract

We studied the factors which regulate the reproduction of ectoparasites of temperate-zone cave-dwelling bats, using the Schreiber’s bat (Miniopterus schreibersii) and its ectoparasites as a model. For this, we searched 969 bats during 2003 and 2004 at important stages of the bat yearly cycle and found four ectoparasite species regularly occurring on them: two nycteribiids (Nycteribia schmidlii and Penicillidia conspicua), one wing mite (Spinturnix psi), and one hard tick (Ixodes simplex simplex). These parasites were present throughout the yearly cycle, but their reproductive activity greatly fluctuated seasonally. Also, we found that sex, age, and reproductive status of the host strongly influenced the reproductive activity of parasites. Overall, the four parasite species had a similar reproductive pattern, reproducing more intensively during the pregnancy and nursing seasons of M. schreibersii, mainly on pregnant and juvenile bats. Moreover, parasites greatly reduced reproductive activity during winter, while bats were in deep torpor or hibernating. We conclude that reproduction in ectoparasites of M. schreibersii and of many other temperate cave-dwelling bats is mostly regulated by the reproductive cycle of their bat hosts, but also limited by roost temperatures during winter. The fact that the reproductive cycle of parasite species of such distinct taxonomic groups are similarly adjusted to that of their bat host suggests that this adjustment is a highly adaptive trait.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Altringham JD (1999) Bats: biology and behaviour. Oxford University Press, Oxford

    Google Scholar 

  • Arthur DR (1956) The Ixodes ticks of Chiroptera (Ixodoidea: Ixodidae). Parasitology 142:180–196

    Google Scholar 

  • Balcells E (1968) Revisión faunística de nicteríbidos y estréblidos de quirópteros españoles y su especificidad. Rev Iber Parasitol 28:21–31

    Google Scholar 

  • Bartonička T, Gaisler J (2007) Seasonal dynamics in the numbers of parasitic bugs (Heteroptera, Cimicidae): a possible cause of roost switching in bats (Chiroptera, Vespertilionidae). Parasitol Res 100:1323–1330

    PubMed  Article  Google Scholar 

  • Christe P, Arlettaz R, Vogel P (2000) Variation in intensity of a parasitic mite (Spinturnix myoti) in relation to the reproductive cycle and immunocompetence of its bat host (Myotis myotis). Ecol Lett 3:207–212

    Article  Google Scholar 

  • Combes C (2001) Parasitism: the ecology and evolution of intimate interactions. University of Chicago Press, Chicago

    Google Scholar 

  • Crompton DWT (1987) Host diet as a determinant of parasite growth, reproduction and survival. Mammal Rev 17(2–3):117–126

    Article  Google Scholar 

  • Deunff J, Beaucournu JC (1981) Phenology and variations of dermecos in some species of Spinturnicidae (Acarina, Mesostigmata). Ann Parasitol Hum Comp 56:203–224

    PubMed  CAS  Google Scholar 

  • Dias D (1982) Contribuição o para o conhecimento dos ectoparasitas de quirópteros de Portugal (Acarina: Macronyssidae e Spinturnicidae). An Inst Hig Med Trop 8:3–14

    Google Scholar 

  • Estrada-Peña A, Balcells E, Serra-Cobo J (1991a) Los artropodos ectoparasitos de murciélagos en España. Los murciélagos de España y Portugal. Colección Técnica ICONA, Madrid

    Google Scholar 

  • Estrada-Peña A, Peribanez MA, Serra J (1991b) The life cycle of Spinturnix psi (Mesostigmata: Spinturnicidae) on Miniopterus schreibersii (Mammalia: Chiroptera). Modern acarology. Academia, Prague and SPB, The Hague

    Google Scholar 

  • Evans GO (1968) The external morphology of the post-embryonic developmental stages of Spinturnix myoti Kol. (Acari: Mesostigmata). Acarologia 10:589–608

    PubMed  CAS  Google Scholar 

  • Grossman CJ (1985) Interactions between gonadal steroids and the immune system. Science 227:257–261

    PubMed  Article  CAS  Google Scholar 

  • Imaz E, Aihartza JR, Totorika MJ (1999) Ectoparasites on bats (Gamasida, Ixodida, Diptera) in Biscay (N Iberian peninsula). Misc Zool 22:21–30

    Google Scholar 

  • Ito A, Kano S, Hioki A, Kasuya S, Ohtomo H (1986) Reduced fecundity of Hymenolepis nana due to thymus-dependent immunological responses in mice. Int J Parasitol 16:81–85

    PubMed  Article  CAS  Google Scholar 

  • Kennedy CR (1975) Ecological animal parasitology. Blackwell, Oxford

    Google Scholar 

  • Lehane MJ (2005) The biology of blood-sucking insects. Cambridge University Press, Cambridge

    Google Scholar 

  • Lourenço SI, Palmeirim JM (2007) Can mite parasitism affect the condition of bat hosts? Implications for the social structure of colonial bats. J Zool 273:161–168

    Article  Google Scholar 

  • Lourenço SI, Palmeirim JM (2008) How do ectoparasitic nycteribiids locate their bat hosts? Parasitology (accepted). doi:10.1017/S003118200800468X

  • Marshall AG (1970) The life cycle of Basilia hispida Theodor 1957 (Diptera: Nycteribiidae) in Malaysia. Parasitology 61:1–18

    Google Scholar 

  • Marshall AG (1971) The ecology of Basilia hispida (Diptera: Nycteribiidae) in Malaysia. J Anim Ecol 40:141–154

    Article  Google Scholar 

  • Marshall AG (1981) The ecology of ectoparasitic insects. Academic, London

    Google Scholar 

  • Minato K, Kimura E, Shintoku Y, Uga S (2008) Effect of temperature on the development of free-living stages of Strongyloides ratti. Parasitol Res 102:315–319

    PubMed  Article  Google Scholar 

  • Newcombe RG (1998) Two-sided confidence intervals for the single proportion: comparison of seven methods. Stat Med 17:857–872

    PubMed  Article  CAS  Google Scholar 

  • Overal WL (1980) Host-relations of the bat fly Megistopoda aranea (Diptera: Streblidae) in Panamá. Kansas Univ Sci Bull 52:1–20

    Google Scholar 

  • Palmeirim JM, Rodrigues L (1995) Dispersal and philopatry in colonial animals: the case of Miniopterus schreibersii. Symp Zool Soc Lond 6:219–231

    Google Scholar 

  • Poulin R (1996) The evolution of life history strategies in parasitic animals. Adv Parasitol 37:107–134

    PubMed  Article  CAS  Google Scholar 

  • Quinnell RJ (1988) Host age and the growth and fecundity of Hymenolepis diminuta in the rat. J Helminthol 62:158–162

    PubMed  CAS  Google Scholar 

  • Radovsky F (1967) The Macronyssidae and Laelapidae parasitic on bats. University of California Press, Berkeley

    Google Scholar 

  • Reckardt K, Kerth G (2006) The reproductive success of the parasitic bat fly Basilia nana (Diptera: Nycteribiidae) is affected by the low roost fidelity of its host, the Bechstein’s bat (Myotis bechsteinii). Parasitol Res 98:237–243

    PubMed  Article  Google Scholar 

  • Reisen WK, Kennedy ML, Reisen NT (1976) Winter ecology of ectoparasites collected from hibernating Myotis velifer (Allen) in southwestern Oklahoma (Chiroptera: Vespertilionidae). J Parasitol 62(4):628–635

    PubMed  Article  CAS  Google Scholar 

  • Rodrigues L, Palmeirim JM (2008) Migratory behaviour of Miniopterus schreibersii (Chiroptera): when, where, and why do cave bats migrate in a Mediterranean region. J Zool 274:116–125

    Article  Google Scholar 

  • Rudnick A (1960) A revision of the family Spinturnicidae. Univ Calif Publ Entomol 17:157–284

    Google Scholar 

  • Ryberg O (1947) Studies on bats and bat parasites. Bokförlaget Svensk Natur, Stockholm

    Google Scholar 

  • Seppälä O, Liljeroos K, Karvonen A, Jokela J (2008) Host condition as a constraint for parasite reproduction. Oikos 117:749–753

    Article  Google Scholar 

  • Shan LV, Zhou X, Zhang Y, Liu H, Zhu D, Yin W, Steinmann P, Wang W, Jia T (2006) The effect of temperature on the development of Angiostrongylus cantonensis (Chen 1935) in Pomacea canaliculata (Lamarck 1822). Parasitol Res 99:583–587

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research. W. H. Freeman, New York

    Google Scholar 

  • Theodor O, Moscona A (1954) On bat parasites in Palestine. I. Nycteribiidae, Streblidae, Hemiptera, Siphonaptera. Parasitology 44:157–245

    PubMed  CAS  Article  Google Scholar 

  • Tinsley RC (2004) Platyhelminth parasite reproduction: some general principles derived from monogeneans. Can J Zool 82:270–291

    Article  Google Scholar 

  • Travassos-Dias JA (1994) As carraças (Acarina: Ixodoidea) da Peninsula Ibérica. Algumas considerações sobre a sua biogeografia e relacionamento com a ixofauna afropaleárctica e afrotropical. Inst Invest Cient Trop, Lisboa

    Google Scholar 

  • Tsai ML, Li JJ, Dai CF (2001) How host size may constrain the evolution of parasite body size and clutch size. The parasitic isopod Ichthyoxenus fushanensis and its host fish, Varicorhinus bacbatulus, as an example. Oikos 92:13–19

    Article  Google Scholar 

  • Yuval B (2006) Mating systems of blood-feeding flies. Annu Rev Entomol 51:413–414

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful to all our friends and colleagues who assisted with fieldwork, especially Luisa Rodrigues, Patricia Salgueiro, Tiago Marques, Maria João Pereira, and Sergio Chozas. Luísa Rodrigues and Instituto da Conservacão da Natureza e Biodiversidade (ICNB) provided logistical support and some data on temperatures within roosts. This work was conducted under permit of ICNB, complying with the current laws of Portugal. It is part of a PhD thesis that is supported by the Fundação para a Ciência e Tecnologia (FCT), co-financed by the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofia Lourenço.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lourenço, S., Palmeirim, J.M. Which factors regulate the reproduction of ectoparasites of temperate-zone cave-dwelling bats?. Parasitol Res 104, 127 (2008). https://doi.org/10.1007/s00436-008-1170-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00436-008-1170-6

Keywords

  • Parasite Species
  • Reproductive Activity
  • Hard Tick
  • Parasite Reproduction
  • Hibernation Season