Advertisement

Parasitology Research

, 104:127 | Cite as

Which factors regulate the reproduction of ectoparasites of temperate-zone cave-dwelling bats?

  • Sofia Lourenço
  • Jorge Mestre Palmeirim
Original Paper

Abstract

We studied the factors which regulate the reproduction of ectoparasites of temperate-zone cave-dwelling bats, using the Schreiber’s bat (Miniopterus schreibersii) and its ectoparasites as a model. For this, we searched 969 bats during 2003 and 2004 at important stages of the bat yearly cycle and found four ectoparasite species regularly occurring on them: two nycteribiids (Nycteribia schmidlii and Penicillidia conspicua), one wing mite (Spinturnix psi), and one hard tick (Ixodes simplex simplex). These parasites were present throughout the yearly cycle, but their reproductive activity greatly fluctuated seasonally. Also, we found that sex, age, and reproductive status of the host strongly influenced the reproductive activity of parasites. Overall, the four parasite species had a similar reproductive pattern, reproducing more intensively during the pregnancy and nursing seasons of M. schreibersii, mainly on pregnant and juvenile bats. Moreover, parasites greatly reduced reproductive activity during winter, while bats were in deep torpor or hibernating. We conclude that reproduction in ectoparasites of M. schreibersii and of many other temperate cave-dwelling bats is mostly regulated by the reproductive cycle of their bat hosts, but also limited by roost temperatures during winter. The fact that the reproductive cycle of parasite species of such distinct taxonomic groups are similarly adjusted to that of their bat host suggests that this adjustment is a highly adaptive trait.

Keywords

Parasite Species Reproductive Activity Hard Tick Parasite Reproduction Hibernation Season 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We are very grateful to all our friends and colleagues who assisted with fieldwork, especially Luisa Rodrigues, Patricia Salgueiro, Tiago Marques, Maria João Pereira, and Sergio Chozas. Luísa Rodrigues and Instituto da Conservacão da Natureza e Biodiversidade (ICNB) provided logistical support and some data on temperatures within roosts. This work was conducted under permit of ICNB, complying with the current laws of Portugal. It is part of a PhD thesis that is supported by the Fundação para a Ciência e Tecnologia (FCT), co-financed by the European Regional Development Fund.

References

  1. Altringham JD (1999) Bats: biology and behaviour. Oxford University Press, OxfordGoogle Scholar
  2. Arthur DR (1956) The Ixodes ticks of Chiroptera (Ixodoidea: Ixodidae). Parasitology 142:180–196Google Scholar
  3. Balcells E (1968) Revisión faunística de nicteríbidos y estréblidos de quirópteros españoles y su especificidad. Rev Iber Parasitol 28:21–31Google Scholar
  4. Bartonička T, Gaisler J (2007) Seasonal dynamics in the numbers of parasitic bugs (Heteroptera, Cimicidae): a possible cause of roost switching in bats (Chiroptera, Vespertilionidae). Parasitol Res 100:1323–1330PubMedCrossRefGoogle Scholar
  5. Christe P, Arlettaz R, Vogel P (2000) Variation in intensity of a parasitic mite (Spinturnix myoti) in relation to the reproductive cycle and immunocompetence of its bat host (Myotis myotis). Ecol Lett 3:207–212CrossRefGoogle Scholar
  6. Combes C (2001) Parasitism: the ecology and evolution of intimate interactions. University of Chicago Press, ChicagoGoogle Scholar
  7. Crompton DWT (1987) Host diet as a determinant of parasite growth, reproduction and survival. Mammal Rev 17(2–3):117–126CrossRefGoogle Scholar
  8. Deunff J, Beaucournu JC (1981) Phenology and variations of dermecos in some species of Spinturnicidae (Acarina, Mesostigmata). Ann Parasitol Hum Comp 56:203–224PubMedGoogle Scholar
  9. Dias D (1982) Contribuição o para o conhecimento dos ectoparasitas de quirópteros de Portugal (Acarina: Macronyssidae e Spinturnicidae). An Inst Hig Med Trop 8:3–14Google Scholar
  10. Estrada-Peña A, Balcells E, Serra-Cobo J (1991a) Los artropodos ectoparasitos de murciélagos en España. Los murciélagos de España y Portugal. Colección Técnica ICONA, MadridGoogle Scholar
  11. Estrada-Peña A, Peribanez MA, Serra J (1991b) The life cycle of Spinturnix psi (Mesostigmata: Spinturnicidae) on Miniopterus schreibersii (Mammalia: Chiroptera). Modern acarology. Academia, Prague and SPB, The HagueGoogle Scholar
  12. Evans GO (1968) The external morphology of the post-embryonic developmental stages of Spinturnix myoti Kol. (Acari: Mesostigmata). Acarologia 10:589–608PubMedGoogle Scholar
  13. Grossman CJ (1985) Interactions between gonadal steroids and the immune system. Science 227:257–261PubMedCrossRefGoogle Scholar
  14. Imaz E, Aihartza JR, Totorika MJ (1999) Ectoparasites on bats (Gamasida, Ixodida, Diptera) in Biscay (N Iberian peninsula). Misc Zool 22:21–30Google Scholar
  15. Ito A, Kano S, Hioki A, Kasuya S, Ohtomo H (1986) Reduced fecundity of Hymenolepis nana due to thymus-dependent immunological responses in mice. Int J Parasitol 16:81–85PubMedCrossRefGoogle Scholar
  16. Kennedy CR (1975) Ecological animal parasitology. Blackwell, OxfordGoogle Scholar
  17. Lehane MJ (2005) The biology of blood-sucking insects. Cambridge University Press, CambridgeGoogle Scholar
  18. Lourenço SI, Palmeirim JM (2007) Can mite parasitism affect the condition of bat hosts? Implications for the social structure of colonial bats. J Zool 273:161–168CrossRefGoogle Scholar
  19. Lourenço SI, Palmeirim JM (2008) How do ectoparasitic nycteribiids locate their bat hosts? Parasitology (accepted). doi: 10.1017/S003118200800468X
  20. Marshall AG (1970) The life cycle of Basilia hispida Theodor 1957 (Diptera: Nycteribiidae) in Malaysia. Parasitology 61:1–18Google Scholar
  21. Marshall AG (1971) The ecology of Basilia hispida (Diptera: Nycteribiidae) in Malaysia. J Anim Ecol 40:141–154CrossRefGoogle Scholar
  22. Marshall AG (1981) The ecology of ectoparasitic insects. Academic, LondonGoogle Scholar
  23. Minato K, Kimura E, Shintoku Y, Uga S (2008) Effect of temperature on the development of free-living stages of Strongyloides ratti. Parasitol Res 102:315–319PubMedCrossRefGoogle Scholar
  24. Newcombe RG (1998) Two-sided confidence intervals for the single proportion: comparison of seven methods. Stat Med 17:857–872PubMedCrossRefGoogle Scholar
  25. Overal WL (1980) Host-relations of the bat fly Megistopoda aranea (Diptera: Streblidae) in Panamá. Kansas Univ Sci Bull 52:1–20Google Scholar
  26. Palmeirim JM, Rodrigues L (1995) Dispersal and philopatry in colonial animals: the case of Miniopterus schreibersii. Symp Zool Soc Lond 6:219–231Google Scholar
  27. Poulin R (1996) The evolution of life history strategies in parasitic animals. Adv Parasitol 37:107–134PubMedCrossRefGoogle Scholar
  28. Quinnell RJ (1988) Host age and the growth and fecundity of Hymenolepis diminuta in the rat. J Helminthol 62:158–162PubMedGoogle Scholar
  29. Radovsky F (1967) The Macronyssidae and Laelapidae parasitic on bats. University of California Press, BerkeleyGoogle Scholar
  30. Reckardt K, Kerth G (2006) The reproductive success of the parasitic bat fly Basilia nana (Diptera: Nycteribiidae) is affected by the low roost fidelity of its host, the Bechstein’s bat (Myotis bechsteinii). Parasitol Res 98:237–243PubMedCrossRefGoogle Scholar
  31. Reisen WK, Kennedy ML, Reisen NT (1976) Winter ecology of ectoparasites collected from hibernating Myotis velifer (Allen) in southwestern Oklahoma (Chiroptera: Vespertilionidae). J Parasitol 62(4):628–635PubMedCrossRefGoogle Scholar
  32. Rodrigues L, Palmeirim JM (2008) Migratory behaviour of Miniopterus schreibersii (Chiroptera): when, where, and why do cave bats migrate in a Mediterranean region. J Zool 274:116–125CrossRefGoogle Scholar
  33. Rudnick A (1960) A revision of the family Spinturnicidae. Univ Calif Publ Entomol 17:157–284Google Scholar
  34. Ryberg O (1947) Studies on bats and bat parasites. Bokförlaget Svensk Natur, StockholmGoogle Scholar
  35. Seppälä O, Liljeroos K, Karvonen A, Jokela J (2008) Host condition as a constraint for parasite reproduction. Oikos 117:749–753CrossRefGoogle Scholar
  36. Shan LV, Zhou X, Zhang Y, Liu H, Zhu D, Yin W, Steinmann P, Wang W, Jia T (2006) The effect of temperature on the development of Angiostrongylus cantonensis (Chen 1935) in Pomacea canaliculata (Lamarck 1822). Parasitol Res 99:583–587CrossRefGoogle Scholar
  37. Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research. W. H. Freeman, New YorkGoogle Scholar
  38. Theodor O, Moscona A (1954) On bat parasites in Palestine. I. Nycteribiidae, Streblidae, Hemiptera, Siphonaptera. Parasitology 44:157–245PubMedCrossRefGoogle Scholar
  39. Tinsley RC (2004) Platyhelminth parasite reproduction: some general principles derived from monogeneans. Can J Zool 82:270–291CrossRefGoogle Scholar
  40. Travassos-Dias JA (1994) As carraças (Acarina: Ixodoidea) da Peninsula Ibérica. Algumas considerações sobre a sua biogeografia e relacionamento com a ixofauna afropaleárctica e afrotropical. Inst Invest Cient Trop, LisboaGoogle Scholar
  41. Tsai ML, Li JJ, Dai CF (2001) How host size may constrain the evolution of parasite body size and clutch size. The parasitic isopod Ichthyoxenus fushanensis and its host fish, Varicorhinus bacbatulus, as an example. Oikos 92:13–19CrossRefGoogle Scholar
  42. Yuval B (2006) Mating systems of blood-feeding flies. Annu Rev Entomol 51:413–414PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Centro de Biologia Ambiental, Departamento de Biologia AnimalFaculdade de Ciências da Universidade de LisboaLisboaPortugal

Personalised recommendations