Skip to main content
Log in

Susceptibility of two strains of mice to the infection with Schistosoma mansoni: Parasitological and biochemical studies

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

In this article, two strains of mice BALB/C and C57 were infected with Egyptian strain of Schistosoma mansoni. BALB/C mice appeared to harbor fewer parasites than did C57 mice. The hepatic and intestinal tissues of C57 mice were loaded with more eggs than that of BALB/C mice. Regardless the strain of mice, the number of eggs per gram of liver tissues was higher than in the intestinal tissues. Some biochemical parameters were measured in the liver of infected and non-infected mice; a significant decrease in the activities of alkaline phosphatase, catalase, glutathione-s-transferase, glutathione, and total lipids of infected mice compared to their matched control were observed. However, there was a significant increase in malondialdehyde level of infected mice compared to their matched group. Detailed discussion on the parasitological and biochemical differences between the two strains was presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  • Armstrong RN (1997) Structure, catalytic mechanism and evolution of the glutathione transferases. Chem Res Toxicol 10:2–18

    Article  PubMed  CAS  Google Scholar 

  • Bilzer M, Gerbes AL (2000) Preservation injury of the liver: mechanisms and novel therapeutic strategies. J Hepatol 32:508–515

    Article  PubMed  CAS  Google Scholar 

  • Boissier J, Moné H (2000) Experimental observations on the sex ratio of adult Schistosoma mansoni, with comments on the natural male bias. Parasitology 121:379–383

    Article  PubMed  Google Scholar 

  • Boissier J, Moné H (2001) Relationship between worm burden and male proportion in Schistosoma mansoni experimentally infected rodents and primates. A meta-analytical approach. Inter J Parasitol 31:1597–1599

    Article  CAS  Google Scholar 

  • Boissier J, Morand S, Moné H (1999) A review of performance and cycle. Parasitology 119:447–454

    Article  PubMed  Google Scholar 

  • Cheever AW (1968) A quantitative post mortem study of Schistosoma mansoni in man. Am J Trop Med Hyg 17:38–64

    PubMed  CAS  Google Scholar 

  • Cheever AW, Macedonia JG, Mosimann JE, Cheever EA (1994) Kinetics of egg production and egg excretion by Schistosoma mansoni and S. japonicum in mice infected with a single pair of worms. Am J Trop Med Hyg 50(3):281–295

    PubMed  CAS  Google Scholar 

  • Cheever AW, Lenzi JA, Lenzi HL, Andrade ZA (2002) Experimental models of Schistosoma mansoni infection. Mem Inst Oswaldo Cruz 97(7):917–940

    Article  PubMed  Google Scholar 

  • Chitsulo L, Engels D, Montresor A, Savioli L (2000) The global status of schistosomiasis and its control. Acta Trop 77:41–51

    Article  PubMed  CAS  Google Scholar 

  • Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186:421–431

    Article  PubMed  CAS  Google Scholar 

  • Eaton DL, Bammler K (1999) Concise review of the glutathione S transferases catalytic activity. Crit Rev Biochem 23:283–336

    Google Scholar 

  • Fattman CL, Schaefer LM, Oury TD (2003) Extracellular superoxide dismutase in biology and medicine. Free Radic Biol Med 35:236–256

    Article  PubMed  CAS  Google Scholar 

  • Gregorevic P, Lynch GS, Williams DA (2001) Hyperbaric oxygen modulates antioxidant enzyme activity in rat skeletal muscles. Eur J Appl Physiol 86:24–27

    Article  PubMed  CAS  Google Scholar 

  • Habig WH, Jakoby WB (1981) Assays for differentiation of glutathione S-transferases. Methods Enzymol 77:398–405

    Article  PubMed  CAS  Google Scholar 

  • Hotez PJ, Molyneux DH, Fenwick A, Ottesen E, Ehrlich S, Sachs JD (2006) Incorporating a rapid-impact package for neglected tropical diseases with programs for HIV/AIDS, tuberculosis, and malaria: a comprehensive pro-poor health policy and strategy for the developing world. PLoS Med 3:102

    Article  Google Scholar 

  • Incani RN, Morales G, Cesari IM (2001) Parasite and vertebrate host genetic heterogeneity determine the outcome of infection by Schistosoma mansoni. Parasitol Res 87(2):131–137

    Article  Google Scholar 

  • Jaeschke H (2000) PReactive oxygen and mechanisms of inflammatory liver injury. J Gastroenterol Hepatol 15:718–724

    Article  PubMed  CAS  Google Scholar 

  • Jones JT, Breeze P, Kusel JR (1989) Schistosome fecundity: influence of host genotype and intensity of infection. Int J Parasitol 19(7):769–777

    Article  PubMed  CAS  Google Scholar 

  • Kassim OO, Cheever AW, Richards CS (1979) Schistosoma mansoni: mice infected with different worm strains. Exp Parasitol 48:220–224

    Article  PubMed  CAS  Google Scholar 

  • Ketterer B (1998) Glutathione S-transferases and prevention of cellular free radical damage. Free Radic Res 28:647–658

    Article  PubMed  CAS  Google Scholar 

  • King PRN, King EI (1954) Estimation of plasma phosphatase by determination of hydrolyzed phenol with amino-antipyrine. J Clin Pathol 7:322–326

    Article  PubMed  Google Scholar 

  • Knight JA, Anderson S, Rawle JM (1972) Chemical basis of the sulfophosphovanillin reaction for estimation total serum lipids. Clin Chem 18:199–202

    PubMed  CAS  Google Scholar 

  • Kolodziejczyk L, Siemieniuk E, Skrzydlewska E (2005) Antioxidant potential of rat liver in experimental infection with Fasciola hepatica. Parasitol Res 96:367–372

    Article  PubMed  CAS  Google Scholar 

  • Kuntz RE, Huang TC, Moore JA (1977) Patas monkey (Erythrocebus patas) naturally infected with Schistosoma mansoni. J Parasitol 63:166–167

    Article  PubMed  CAS  Google Scholar 

  • LoVerde PT (1998) Do antioxidants play a role in schistosome host parasite interactions? Parasitol Today 14:284–289

    Article  PubMed  CAS  Google Scholar 

  • Mannervik B, Danielson UH (1988) Glutathione transferases-structure and their significance to toxicology. Toxicol Sci 49:156–164

    Google Scholar 

  • McCord JM (1993) Human disease, free radicals, and the oxidant/ antioxidant balance. Clin Biochem 26:351–357

    Article  PubMed  CAS  Google Scholar 

  • Michiels C, Raes M, Toussaint O, Ramacle J (1994) Importance of glutathione peroxidase, catalase and Cu, Zn-SOD for cell survival against oxidative stress. Free Radic Biol Med 17:235–248

    Article  PubMed  CAS  Google Scholar 

  • Nielsen F, Mikkelsen BB, Nielsen JB, Andersen HR, Grandjean P (1997) Plasma malondialdehyde as biomarker for oxidative stress: reference interval and effects of life-style factors. Clin Chem 43:1209–1214

    PubMed  CAS  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxidation in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:350–358

    Article  Google Scholar 

  • Oliver L, Stirewalt MA (1952) An efficient method for exposure of mice to cercariae of Schistosoma mansoni. J Parasitol 38:19–23

    Article  Google Scholar 

  • Prins HK, Loose JA (1969) Glutathione. In: Yunis JJ (ed) Biochemical methods in red cell genetics. Academic, London, pp 126–129

    Google Scholar 

  • Rajasekaran S, Sivagnanam K, Subramanian S (2005) Antioxidant effect of aloe vera gel extract in streptozotocin-induced diabetes in rats. Pharmacol Rep 57:90–96

    PubMed  Google Scholar 

  • Saoud MFA (1966) The infectivity and pathogenicity of geographical strains of Schistosoma mansoni. Trans R Soc Trop Med Hyg 60:585–600

    Article  PubMed  CAS  Google Scholar 

  • Sayed AA, Cook SK, Williams DL (2006) Redox balance mechanisms in Schistosoma mansoni rely on peroxiredoxins and albumin and implicate peroxiredoxins as novel drug targets. J Biol Chem 281:17001–17010

    Article  PubMed  CAS  Google Scholar 

  • Smithers SR, Terry RJ (1965) The infection of laboratory hosts with cercariae of Schistosoma mansoni and the recovery of the adult worms. Parasitology 55:695–700

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osama M. S. Mostafa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bin Dajem, S.M., Mostafa, O.M.S. & El-Said, F.G. Susceptibility of two strains of mice to the infection with Schistosoma mansoni: Parasitological and biochemical studies. Parasitol Res 103, 1059–1063 (2008). https://doi.org/10.1007/s00436-008-1092-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-008-1092-3

Keywords

Navigation