Skip to main content
Log in

Glycogen branching enzyme: a novel deltamethrin resistance-associated gene from Culex pipiens pallens

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The glycogen branching enzyme (GBE) gene has been cloned from Culex pipiens pallens. An open reading frame of 2,070 bp was found to encode a putative 689 amino acid protein. The deduced amino acid sequence shares 82% and 60% identity with GBE genes from Aedes aegypti and Homo sapiens. Transcript expression of GBE was determined by real-time polymerase chain reaction in deltamethrin-susceptible and deltamethrin-resistant strains of the Culex mosquito. The results demonstrated that this gene has 19.7-fold higher expression in deltamethrin-resistant strain. Unexpectedly, the following study showed that cell proliferation decreased obviously in the GBE overexpression group compared to the empty vector control or the unrelated gene when treated by deltamethrin in the mosquito C6/36 cells whose mechanism is still unexplained. Our study provides the first direct evidence that GBE gene may play some role in the development of deltamethrin resistance in C. pipiens pallens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abe A, Yoshida H, Tonozuka T, Sakano Y, Kamitori S (2005) Complexes of Thermoactinomyces vulgaris R-47 alpha-amylase 1 and pullulan model oligossacharides provide new insight into the mechanism for recognizing substrates with alpha-(1,6) glycosidic linkages. FEBS J 272(23):6145–6153

    Article  PubMed  CAS  Google Scholar 

  • Bates SL, Zhao JZ, Roush RT, Shelton AM (2005) Insect resistance management in GM crops: past, present and future. Nat Biotechnol 23(1):57–62

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4(7):517–529

    Article  PubMed  CAS  Google Scholar 

  • Boel E, Brady L, Brzozowski AM, Derewenda Z, Dodson GG, Jensen VJ, Petersen SB, Swift H, Thim L, Woldike HF (1990) Calcium binding in alpha-amylases: an X-ray diffraction study at 2.1-A resolution of two enzymes from Aspergillus. Biochemistry 29(26):6244–6249

    Article  PubMed  CAS  Google Scholar 

  • Brzozowski AM, Lawson DM, Turkenburg JP, Bisgaard-Frantzen H, Svendsen A, Borchert TV, Dauter Z, Wilson KS, Davies GJ (2000) Structural analysis of a chimeric bacterial alpha-amylase. High-resolution analysis of native and ligand complexes. Biochemistry 39(31):9099–90107

    Article  PubMed  CAS  Google Scholar 

  • Clapham DE (2007) Calcium signaling. Cell 131(6):1047–1058

    Article  PubMed  CAS  Google Scholar 

  • Clark JM, Symington SB (2007) Pyrethroid action on calcium channels: neurotoxicological implications. Invert Neurosci 7(1):3–16

    Article  PubMed  CAS  Google Scholar 

  • Davies G, Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3(9):853–859

    Article  PubMed  CAS  Google Scholar 

  • Davies TG, Field LM, Usherwood PN, Williamson MS (2007) DDT, pyrethrins, pyrethroids and insect sodium channels. IUBMB Life 59(3):151–162

    Article  PubMed  CAS  Google Scholar 

  • Ffrench-Constant RH, Daborn PJ, Le Goff G (2004) The genetics and genomics of insecticide resistance. Trends Genet 20(3):163–170

    Article  PubMed  CAS  Google Scholar 

  • Georghiou G (1990) Implication of agricultural pesticide used in relation to the development of resistance in disease vectors. W.H.O. Document CTD/CP12/90.18

  • Gong M, Shen B, Gu Y, Tian H, Ma L, Li X, Yang M, Hu Y, Sun Y, Hu X et al (2005) Serine proteinase over-expression in relation to deltamethrin resistance in Culex pipiens pallens. Arch Biochem Biophys 438(1):53–62

    PubMed  CAS  Google Scholar 

  • Haiwei W, Haisheng T, Guanling W (2004) Culex pipiens pallens: identification of genes differentially expressed in deltamethrin-resistant and -susceptible strains. Pestic Biochem Physiol 79:75–83

    Article  CAS  Google Scholar 

  • Hemingway J, Ranson H (2000) Insecticide resistance in insect vectors of human disease. Annu Rev Entomol 45:371–391

    Article  PubMed  CAS  Google Scholar 

  • Hemingway J, Field L, Vontas J (2002) An overview of insecticide resistance. Science 298(5591):96–97

    Article  PubMed  CAS  Google Scholar 

  • Hemingway J, Hawkes NJ, McCarroll L, Ranson H (2004) The molecular basis of insecticide resistance in mosquitoes. Insect Biochem Mol Biol 34(7):653–665

    Article  PubMed  CAS  Google Scholar 

  • Henrissat B, Callebaut I, Fabrega S, Lehn P, Mornon JP, Davies G (1995) Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proc Natl Acad Sci U S A 92(15):7090–7094

    Article  PubMed  CAS  Google Scholar 

  • Hu X, Wang W, Zhang D, Jiao J, Tan W, Sun Y, Ma L, Zhu C (2007a) Cloning and characterization of 40S ribosomal protein S4 gene from Culex pipiens pallens. Comp Biochem Physiol B Biochem Mol Biol 146(2):265–270

    Article  PubMed  CAS  Google Scholar 

  • Hu X, Sun Y, Wang W, Yang M, Sun L, Tan W, Sun J, Qian J, Ma L, Zhang D et al (2007b) Cloning and characterization of NYD-OP7, a novel deltamethrin resistance associated gene from Culex pipiens pallens. Pestic Biochem Physiol 88:82–91

    Article  CAS  Google Scholar 

  • Kozak M (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44(2):283–292

    Article  PubMed  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Li X, Ma L, Lixin S et al (2002) Biotic characteristics in the deltamethrin-susceptible and resistant strains of Culex pipiens pallens (Diptera: Culicidae)in China [J]. Appl Entomol Zool 37:305–308

    Article  Google Scholar 

  • Machius M, Declerck N, Huber R, Wiegand G (1998) Activation of Bacillus licheniformis alpha-amylase through a disorder→order transition of the substrate-binding site mediated by a calcium–sodium–calcium metal triad. Structure 6(3):281–292

    Article  PubMed  CAS  Google Scholar 

  • McKenzie JA (2000) The character or the variation: the genetic analysis of the insecticide-resistance phenotype. Bull Entomol Res 90(1):3–7

    Article  PubMed  CAS  Google Scholar 

  • McKenzie JB, Batterham P (1994) The genetic, molecular and phenotypic consequences of selection for insecticide resistance. Trends Ecol Evol 9:166–169

    Article  Google Scholar 

  • Melendez R, Melendez-Hevia E, Canela EI (1999) The fractal structure of glycogen: a clever solution to optimize cell metabolism. Biophys J 77(3):1327–1332

    Article  PubMed  CAS  Google Scholar 

  • Melendez-Hevia E, Waddell TG, Shelton ED (1993) Optimization of molecular design in the evolution of metabolism: the glycogen molecule. Biochem J 295(Pt 2):477–483

    PubMed  CAS  Google Scholar 

  • Nauen R, Denholm I (2005) Resistance of insect pests to neonicotinoid insecticides: current status and future prospects. Arch Insect Biochem Physiol 58(4):200–215

    Article  PubMed  CAS  Google Scholar 

  • Ranson H, Claudianos C, Ortelli F, Abgrall C, Hemingway J, Sharakhova MV, Unger MF, Collins FH, Feyereisen R (2002) Evolution of supergene families associated with insecticide resistance. Science 298(5591):179–181

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    PubMed  CAS  Google Scholar 

  • Tan W, Sun L, Zhang D, Sun J, Qian J, Hu X, Wang W, Sun Y, Ma L, Zhu C (2007) Cloning and overexpression of ribosomal protein L39 gene from deltamethrin-resistant Culex pipiens pallens. Exp Parasitol 115(4):369–378

    Article  PubMed  CAS  Google Scholar 

  • Weill M, Berthomieu A, Berticat C, Lutfalla G, Negre V, Pasteur N, Philips A, Leonetti JP, Fort P, Raymond M (2004) Insecticide resistance: a silent base prediction. Curr Biol 14(14):R552–R553

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Chen H, Davidson T, Kluz T, Zhang Q, Costa M (2004) Nickel-induced 1,4-alpha-glucan branching enzyme 1 up-regulation via the hypoxic signaling pathway. Toxicol Appl Pharmacol 196(3):404–409

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Miss Jinmei Xu for her help with data analysis. We also thank the anonymous reviewers for their helpful comments and suggestions. This work was supported by the National Natural Science Foundation of China (Nos. 30671827 and 30628022) and the National Infrastructure of Natural Resources for Science and Technology Program of China (No. 2005KDA21104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changliang Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., Yang, M., Sun, J. et al. Glycogen branching enzyme: a novel deltamethrin resistance-associated gene from Culex pipiens pallens . Parasitol Res 103, 449–458 (2008). https://doi.org/10.1007/s00436-008-1003-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-008-1003-7

Keywords

Navigation