Skip to main content

Advertisement

Log in

Mosquito larvicidal activity of gluanol acetate, a tetracyclic triterpenes derived from Ficus racemosa Linn

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The larvicidal activity of crude hexane, ethyl acetate, petroleum ether, acetone, and methanol extracts of the leaf and bark of Ficus racemosa (Moraceae) was assayed for their toxicity against the early fourth-instar larvae of Culex quinquefasciatus (Diptera: Culicidae). The larval mortality was observed after 24-h exposure. All extracts showed moderate larvicidal effects; however, the highest larval mortality was found in bark acetone extract of F. racemosa. In the present study, bioassay-guided fractionation of acetone extract led to the separation and identification of a tetracyclic triterpenes derivative; gluanol acetate was isolated and identified as new mosquito larvicidal compound. Gluanol acetate was quite potent against fourth-instar larvae of Aedes aegypti L. (LC50 14.55 and LC90 64.99 ppm), Anopheles stephensi Liston (LC50 28.50 and LC90 106.50 ppm) and C. quinquefasciatus Say (LC50 41.42 and LC90 192.77 ppm). The structure was elucidated from infrared, ultraviolet, 1H-nuclear magnetic resonance (NMR), 13C-NMR, and mass spectral data. This is the first report on the mosquito larvicidal activity of the reported compound from F. racemosa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alexenizer M, Dorn A (2007) Screening of medicinal and ornamental plants for insecticidal and growth regulating activity. J Pest Sci 80:205–215

    Article  Google Scholar 

  • Amer A, Mehlhorn H (2006a) Persistency of larvicidal effects of plant oil extracts under different storage conditions. Parasitol Res 99:473–477

    Article  PubMed  Google Scholar 

  • Amer A, Mehlhorn H (2006b) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol Res 99:466–472

    Article  PubMed  Google Scholar 

  • Arannilewa ST, Ekrakene T, Akinneye JO (2006) Laboratory evaluation of four medicinal plants as protectants against the maize weevil, Sitophilus zeamais (Mots). Afr J Biotechnol 5:2032–2036

    Google Scholar 

  • Barbercheck ME, Wang J (1996) Effect of cucurbitacin D on in vitro growth of Xenorhabdus and Photorhabdus spp., symbiotic bacteria of entomopathogenic nematodes. J Invertebr Pathol 68:141–145

    Article  PubMed  CAS  Google Scholar 

  • Bernhard L, Bernhard P, Magnussen P (2003) Management of patients with lymphoedema caused by filariasis in North–eastern Tanzania: alternative approaches. Physiotherapy 89:743–749

    Article  Google Scholar 

  • Boonlaksiri C, Oonanant W, Kongsaeree P, Kittakoop P, Tanticharoen M, Thebtaranonth Y (2000) An antimalarial stilbene from Artocarpus integer. Phytochemistry 54:415–417

    Article  PubMed  CAS  Google Scholar 

  • Chandra S, Lal J, Sabir M (1979) Chemical examination of the fruits of Ficus glomerata Roxb. J Indian Chem Soc 56:1269

    CAS  Google Scholar 

  • Chaubal R, Pawar PV, Hebbalkar GD, Tungikar VB, Puranik VG, Deshpande VH, Deshpande NR (2005) Larvicidal activity of Acacia nilotica extracts and isolation of d-pinitol-a bioactive carbohydrate. Chem Biodivers 2:684–688

    Article  PubMed  CAS  Google Scholar 

  • De Omena MC, Bento ES, De Paula JE, Sant, Ana AE (2006) Larvicidal diterpenes from Pterodon polygalaeflorus. Vector Borne Zoonotic Dis 6:216–222

    Article  PubMed  Google Scholar 

  • Fradin MS, Day JF (2002) Comparative efficacy of insect repellents against mosquitoes bites. N Engl J Med 347:13–18

    Article  PubMed  CAS  Google Scholar 

  • Ghosal S, Jaiswal DK, Biswas K (1978) New glycoxanthones and flavanone glycosides of Hoppea dichotoma. Phytochemistry 17:2119–2123

    Article  CAS  Google Scholar 

  • Hales S, Wet ND, Maindonald J, Woodward A (2002) Potential effect of population and climate changes on global distribution of dengue fever: an empirical model. Lancet 360:830–834

    Article  PubMed  Google Scholar 

  • Hansson A, Veliz G, Naquira C, Amren M, Arroyo M, Arevalo G (1986) Preclinical and clinical studies with latex from Ficus glabrata HBK, a traditional intestinal antihelminthic in the Amazonian area. J Ethnopharmacol 2:105–138

    Article  Google Scholar 

  • Harve G, Kamath V (2004) Larvicidal activity of plant extracts used alone and in combination with known synthetic larvicidal agents against Aedes aegypti. Indian J Exp Biol 42(12):1216–1219

    PubMed  Google Scholar 

  • Hashim MS, Devi KS (2003) Insecticidal action of the polyphenolic rich fractions from the stem bark of Streblus asper on Dysdercus cingulatus. Fitoterapia 74:670–676

    Article  PubMed  CAS  Google Scholar 

  • Husain A, Virmani OP, Popli SP, Misra LN, Gupta MM, Srivastava GN, Abraham Z, Singh AK (1992) Dictionary of Indian medicinal plants. CIMAP, Lucknow, p 546

    Google Scholar 

  • Jang YS, Jeon JH, Lee HS (2005) Mosquito larvicidal activity of active constituent derived from Chamaecyparis obtusa leaves against 3 mosquito species. J Am Mosq Control Assoc 21:400–403

    Article  PubMed  CAS  Google Scholar 

  • Kirtikar KR, Basu BD (2001) Indian medicinal plants, vol. 10. 2nd edn. Oriental Enterprises, Uttaranchal, pp 3216–3219

    Google Scholar 

  • Kloucek P, Svobodova B, Polesny Z, Langrova I, Smrcek S, Kokoska L (2007) Antimicrobial activity of some medicinal barks used in Peruvian Amazon. J Ethnopharmacol 111:427–429

    Article  PubMed  CAS  Google Scholar 

  • Konno K, Hirayama C, Nakamura M, Tateishi K, Tamura Y, Hattori M, Kohno K (2004) Papain protects papaya trees from herbivorous insects: role of cysteine proteases in latex. Plant J 37:370–378

    Article  PubMed  CAS  Google Scholar 

  • Kuete V, Metuno R, Ngameni B, Tsafack AM, Ngandeu F, Fotso GW, Bezabih M, Etoa FX, Ngadjui BT, Abegaz BM, Beng VP (2007) Antimicrobial activity of the methanolic extracts and compounds from Treculia obovoidea (Moraceae). J Ethnopharmacol 112:531–536

    Article  PubMed  CAS  Google Scholar 

  • Lee SE (2000) Mosquito larvicidal activity of pipernonaline, a piperidine alkaloid derived from long pepper, Piper longum. J Am Mosq Control Assoc 16:245–247

    PubMed  CAS  Google Scholar 

  • Li RW, Leach DN, Myers SP, Lin GD, Leach GJ, Waterman PG (2004) A new anti-inflammatory glucoside from Ficus racemosa L. Planta Med 70:421–426

    Article  PubMed  CAS  Google Scholar 

  • Mahato RB, Chaudhary RP (2005) Ethnomedicinal study and antibacterial activities of selected plants of Palpa District, Nepal. Scientific World 3:26–31

    Google Scholar 

  • Merchant JR, Engineer AB (1979) Chemical investigation of the fruits of Ficus glomerata Roxb. Indian J chem 17B:87–88

    CAS  Google Scholar 

  • Mishra V, Khan NU, Singhal KC (2005) Potential antifilarial activity of fruit extracts of Ficus racemosa Linn. against Setaria cervi in vitro. Indian J Exp Biol 43:346–350

    PubMed  Google Scholar 

  • Mohan L, Sharma P, Srivastava CN (2007) Comparative efficacy of Solanum xanthocarpum extracts alone and in combination with a synthetic pyrethroid, cypermethrin, against malaria vector, Anopheles stephensi. Southeast Asian J Trop Med Public Health 38:256–260

    PubMed  Google Scholar 

  • Ndung’u MW, Kaoneka B, Hassanali A, Lwande W, Hooper AM, Tayman F, Zerbe O, Torto B (2004) New mosquito larvicidal tetranortriterpenoids from Turraea wakefieldii and Turraea floribunda. J Agric Food Chem 52:5027–5031

    Article  PubMed  CAS  Google Scholar 

  • Pandey V, Agrawal V, Raghavendra K, Dash AP (2007) Strong larvicidal activity of three species of Spilanthes (Akarkara) against malaria (Anopheles stephensi Liston, Anopheles culicifacies, species C) and filaria vector (Culex quinquefasciatus Say). Parasitol Res 102:171–174

    Article  PubMed  Google Scholar 

  • Park IK, Shin SC, Kim CS, Lee HJ, Choi WS, Ahn YJ (2005) Larvicidal activity of lignans identified in Phryma leptostachya Var. asiatica roots against three mosquito species. J Agric Food Chem 53:969–972

    Article  PubMed  CAS  Google Scholar 

  • Rahuman AA, Venkatesan P (2008) Larvicidal efficacy of five cucurbitaceous plant leaf extracts against mosquito species. Parasitol Res DOI 10.1007/s00436-008-0940-5

  • Rahuman AA, Gopalakrishnan G, Ghouse BS, Arumugam S, Himalayan B (2000) Effect of Feronia limonia on mosquito larvae. Fitoterapia 71:553–555

    Article  PubMed  CAS  Google Scholar 

  • Rahuman AA, Gopalakrishnan G, Venkatesan P, Geetha K (2008a) Larvicidal activity of some Euphorbiaceae plant extracts against Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res (in press)

  • Rahuman AA, Gopalakrishnan G, Venkatesan P, Geetha K (2008b) Isolation and identification of mosquito larvicidal compound from Abutilon indicum (Linn.) Sweet. Parasitol Res (in press)

  • Rao KN, Suresh CG, Katre UV, Gaikwad SM, Khan MI (2004) Two orthorhombic crystal structures of a galactose-specific lectin from Artocarpus hirsuta in complex with methyl-alpha-d-galactose. Acta Crystallogr D Biol Crystallogr 60:1404–1412

    Article  PubMed  CAS  Google Scholar 

  • Rastogi RP, Mehrota BN (1993) Compendium of Indian medicinal plants, vols. 2 and 3. Central Drug Research Institute, Lucknow and Publication and Information Directorate, New Delhi, pp 185, 295, 320

  • Rastogi RP, Mehrotra BN (1995) Compendium of Indian medicinal plants, vols. 1 and 4. Central Drug Research Institute, Lucknow and Publication and Information Directorate, New Delhi, pp 188, 321

  • Rastogi S, Kulshreshtha DK, Rawat AKS (2006) Streblus asper Lour. (Shakhotaka): a review of its chemical, pharmacological and ethnomedicinal properties. eCAM 3:217–222

    PubMed  Google Scholar 

  • Reddy PJ, Krishna D, Murthy US, Jamil K (1992) A microcomputer FORTRAN program for rapid determination of lethal concentration of biocides in mosquito control. CABIOS 8:209–213

    PubMed  CAS  Google Scholar 

  • Rocha GDG, Simões M, Lúcio KA, Oliveira RR, Kaplan MAC, Gattass CR (2007) Natural triterpenoids from Cecropia lyratiloba are cytotoxic to both sensitive and multidrug resistant leukemia cell lines. Bioorg Med Chem 15:7355–7360

    Article  CAS  Google Scholar 

  • Rongsriyam Y, Trongtokit Y, Komalamisra N, Sinchaipanich N, Apiwathnasorn C, Mitrejet A (2006) Formulation of tablets from the crude extract of Rhinacanthus nasutus (Thai local plant) against Aedes aegypti and Culex quinquefasciatus larvae: a preliminary study. Southeast Asian J Trop Med Public Health 7:265–271

    Google Scholar 

  • Santos ECT, Lopes D, Oliveira RR, Carauta JPP, Falcao CAB, Kaplan MAC, Bergmann BR (2004) Antileishmanial activity of isolated triterpenoids from Pourouma guianensis. Phytomedicine 11:114–120

    Article  Google Scholar 

  • Shaalan EA, Canyon DV, Younes MW, Abdel-Wahab H, Mansour AH (2006) Efficacy of eight larvicidal botanical extracts from Khaya saenegalensis and Daucus carota against Culex annulirostris. J Am Mosq Control Assoc 22:433–436

    Article  PubMed  Google Scholar 

  • Siddiqui BS, Afshan F, Faizi S, Naqvi SNH, Tariq RM (2002) Two new triterpenoids from Azadirachta indica and their insecticidal activity. J Nat Prod 65:1216–1218

    Article  PubMed  CAS  Google Scholar 

  • Siddiqui BS, Afshan F, Gulzar T, Sultana R, Naqvi SN, Tariq RM (2003) Tetracyclic triterpenoids from the leaves of Azadirachta indica and their insecticidal activities. Chem Pharm Bull (Tokyo) 51:415–417

    Article  CAS  Google Scholar 

  • Siddiqui BS, Gulzar T, Mahmood A, Begum S, Khan B, Afshan F (2004) New insecticidal amides from petroleum ether extract of dried Piper nigrum L. whole fruits. Chem Pharm Bull (Tokyo) 52:1349–1352

    Article  CAS  Google Scholar 

  • Singh RN, Saratchandra B (2005) The development of botanical products with special reference to seri-ecosystem. Caspian J Env Sci 3:1–8

    CAS  Google Scholar 

  • Taubitz W, Cramer JP, Kapaun A, Pfeffer M, Drosten C, Dobler G, Burchard GD, Löscher T (2007) Chikungunya fever in travelers: clinical presentation and course. Clin Infect Dis 45:508

    Article  Google Scholar 

  • Vatandoost H, Vaziri VM (2004) Larvicidal activity of a neem tree extract (Neemarin) against mosquito larvae in the Islamic Republic of Iran. East Mediterr Health J 10:573–581

    PubMed  CAS  Google Scholar 

  • Vieira IJC, Felho RB (2006) Quassinoids: structural diversity, biological activity and synthetic studies. Stud Nat Prod Chem 33:433–492

    Article  CAS  Google Scholar 

  • Wernsdorfer G, Wernsdorfer WH (2003) Malaria at the turn from the 2nd to the 3rd millennium. Wien Klin Wochenschr 115:2–9

    PubMed  Google Scholar 

  • Wiesman Z, Chapagain BP (2006) Larvicidal activity of saponin containing extracts and fractions of fruit mesocarp of Balanites aegyptiaca. Fitoterapia 77:420–424

    Article  PubMed  CAS  Google Scholar 

  • World Health Organization (1996) Report of the WHO informal consultation on the evaluation on the testing of insecticides. CTD/WHO PES/IC/96.1. WHO, Geneva, p 69

    Google Scholar 

  • Yenesew A, Kiplagat JT, Derese S, Midiwo JO, Kabaru JM, Heydenreich M, Peter MG (2006) Two unusual rotenoid derivatives, 7a-O-methyl-12a-hydroxydeguelol and spiro-13-homo-13-oxaelliptone, from the seeds of Derris trifoliata. Photochemistry 67:988–991

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to C. Abdul Hakeem College Management, Prof. U. Peer, Principal and Dr.Ahmed Najib, HOD of Zoology Department for their help and suggestion. We wish to thank the Principal and HOD of Zoology Department, Loyola College, Chennai for providing necessary facilities for our experimental work. AR is indebted to University Grants Commission, New Delhi for award of fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Abdul Rahuman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahuman, A.A., Venkatesan, P., Geetha, K. et al. Mosquito larvicidal activity of gluanol acetate, a tetracyclic triterpenes derived from Ficus racemosa Linn. Parasitol Res 103, 333–339 (2008). https://doi.org/10.1007/s00436-008-0976-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-008-0976-6

Keywords

Navigation