Skip to main content

Nanosilica—from medicine to pest control

Abstract

Nanotechnology is a broad interdisciplinary area of research, development, and industrial activity that has been growing rapidly worldwide for the past decade. More ambitious uses of nanoparticles are bioremediation of contaminated environments, controlled release of fragrances, biocides, and antifungals on textiles. Silica nanocomposites have received much attention because of its thermal degradation behavior and applications in chromatography, medicine, optics, etc. Nanobiotech takes agriculture from the battleground of genetically modified organisms to the brave new world of atomically modified organisms where rice has been modified atomically. Silica has been widely applied in various industries. Application of gold-coated silica has been used in the treatment for benign and malignant tumor. Surface-modified hydrophobic as well as lipophilic nanosilica could be effectively used as novel drugs for treatment of chicken malaria and nuclear polyhedrosis virus (BmNPV), a scourge in silkworm industry. Here, the authors attempt to provide a review to explain the impact of nanosilica on basic biology, medicine, agro-nanoproducts, and use of amorphous nanosilica as biopesticide.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Akbarian F, Lin A, Dunn BS, Valentine JS, Zink JI (1997) Spectroscopic determination of cholinesterase activity and inhibition in sol-gel media. J Sol-Gel Sci Technol 8:1067–1070

    CAS  Google Scholar 

  • Alexey A, Vertegel R, Siegel W, Dordick JS (2004) Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir 20:6800–6807

    Article  Google Scholar 

  • Alyushin MT, Astakhova MN (1971) Aerosil and its application in pharmaceutical practice. Pharmacy 6:73–77

    Google Scholar 

  • Avnir D, Braun S, Lev O, Ottolenghi O (1994) Enzymes and other proteins entrapped in sol-gel materials. Chem Mater 6(10):1605–1614

    Article  CAS  Google Scholar 

  • Blitz JP, Gun’ko VM (eds) (2006) In: Surface chemistry in biomedical and environmental science, NATO science series II: mathematics, physics and chemistry. vol. 228. Springer, Dordrecht

  • Bower CK, Sananikone S, Bothwell MK, McGuire J (1998) Activity losses among T4 lysozyme charge variants after adsorption to colloidal silica. Biotechnol Bioeng 64(3):373–376

    Article  Google Scholar 

  • Brongersma ML (2003) Nanoscale photonics: nanoshells: gifts in a gold wrapper. Nat Mater 2:296–297

    PubMed  Article  CAS  Google Scholar 

  • Che S, Bennett AEG, Yokoi T, Sakamoto K, Kunieda H, Terasaki O, Tatsumi T (2003) A novel anionic surfactant templating route for synthesizing mesoporous silica with unique structure. Nat Mater 2:801–805

    PubMed  Article  CAS  Google Scholar 

  • Chuiko AA (ed) (2003) In: Medical chemistry and clinical application of silicon dioxide. Nukova Dumka, Kiev

  • Czeslik C, Winter R (2001) Effect of temperature on the conformation of lysozyme adsorbed to silica particles. Phys Chem Chem Phys 3:235–239

    Article  CAS  Google Scholar 

  • Diociaiuti M, Bordi F, Gataleta L, Baldo G, Crateri P, Paoletti L (1999) Morphological and functional alterations of human erythrocytes induced by SiO2 particles: an electron microscopy and dielectric spectroscopy study. Environ Res A 80:197–207

    Article  CAS  Google Scholar 

  • Ferracane JL, Berge HX, Condon JR (1998) In vitro aging of dental composites in water—effect of degree of conversion, filler volume, and filler/matrix coupling. J Biomed Mater Res 42:465–472

    PubMed  Article  CAS  Google Scholar 

  • Gerashchenko BI, Gerashchenko II, Bogomaz VI, Pantazis CG (1994) Adsorption of aerosil on erythrocyte surface by flow cytometry measurement. Cytometry 15:80–83

    PubMed  Article  CAS  Google Scholar 

  • Gerashchenko BI, Gerashchenko II, Pantazis CG (1996) Possible selective elimination of red blood cells under the influence of colloidal silica. Med Hypotheses 47:69–70

    PubMed  Article  CAS  Google Scholar 

  • Gerashchenko BI, Gun’ko VM, Gerashchenko II, Leboda R, Hosoya H, Mironyuk IF (2002) Probing the silica surfaces by red blood cells. Cytometry 49(2):56–61

    PubMed  Article  Google Scholar 

  • Gun’ko VM, Galagan NP, Grytsenko IV, Zarko VI, Oranska OI, Osaulenko VL, Bogatyrev VM, Turov VV (2007) Interaction of unmodified and partially silylated nanosilica with red blood cells. Cent Eur J Chem 5(4):951–969

    Article  CAS  Google Scholar 

  • Haruta M (2003) When gold is not noble: catalysis by nanoparticles. Chem Record 3(2):75–87

    Article  CAS  Google Scholar 

  • Hirsch LR, Jackson JB, Lee A, Halas NJ, West JL (2003a) A whole blood immunoassay using gold nanoshells. Anal Chem 75(10):2377–2381

    PubMed  Article  CAS  Google Scholar 

  • Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL (2003b) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci 100:13549–13554

    PubMed  Article  CAS  Google Scholar 

  • Hui-Peng Y, Xiao-Feng W, Gokulamma K (2006) Antiviral activity in the mulberry silkworm. Bombyx mori L. J Zhejiang Univ Sci A 2:350–356

    Google Scholar 

  • Iler RK (1979) The chemistry of silica. Wiley, New York

    Google Scholar 

  • Kondo A, Murakami F, Kawagoe M, Higashitani K (1993) Kinetic and circular dichroism studies of enzymes adsorbed on ultrafine silica particles. Appl Microbiol Biotechnol 39(6):726–731

    PubMed  Article  CAS  Google Scholar 

  • Kreuter J (ed) (1994) In: Colloidal drug delivery systems. Marcel Dekker, New York

  • Lawry JV (2001) Insects separate diffusing particles in parallel. Nanotech Model Simul Microsyst 1:254–257

    Google Scholar 

  • Li X, Cao Z, Liu F, Zhang Z, Dang H (2006) A novel method of preparation of superhydrophobic nanosilica in aqueous solution. Chem Lett 35(1):1–2

    Article  Google Scholar 

  • Lim BS, Ferracane JL, Condon JR, Adey JD (2002) Effect of filler fraction and filler surface treatment on wear of microfilled composites. Dent Mater 18:1–11

    PubMed  Article  CAS  Google Scholar 

  • Loza-Herrero MA, Rueggeberg FA, Caughman WF, Schuster GS, Lefebvre CA, Gardner FM (1998) Effect of heating delay on conversion and strength of a post-cured resin composite. J Dent Res 77:426–431

    PubMed  CAS  Article  Google Scholar 

  • Majumder D, Banerjee R, Ulrichs C, Mewis I, Samanta A, Das A, Mukhopadhayay S, Adhikary S, Goswami A (2006) Nanofabricated materials in cancer treatment and agri-biotech applications: buckyballs in quantum holy grails.. IETE J Res 52:339–356 (Special Issue: Nano-electronic devices and technology)

    Google Scholar 

  • Majumder D, Ulrichs C, Mewis I, Weishaupt B, Majumder B, Ghosh A, Thakur AR, Brahmachary RL, Banerjee R, Rahman A, Debnath N, Seth D, Das S, Roy I, Sagar P, Schulz C, Quang-Linh N, Goswami A (2007) Current status and future trends of nanoscale technology and its impact on modern computing, biology, medicine and agricultural biotechnology, platinum jubilee symposium of the Indian statistical institute. In: Proceedings of the International Conference on Computing: Theory and Applications, ICCTA 2007; March 5–7, India. Conference Publication Proceedings, IEEE Press, 563–572

  • Norde W, Anusiem ACI (1992) Adsorption, desorption and re-adsorption of proteins on solid surfaces. Colloids Surf 66:73–80

    Article  CAS  Google Scholar 

  • Pallav P, de Gee AJ, Davidson CL, Erickson RL, Glasspoole EA (1989) The influence of admixing microfiller to small-particle composite resin on wear, tensile strength, hardness, and surface roughness. J Dent Res 68:480–490

    Google Scholar 

  • Panteghini M, Ceriotti F, Schumann G, Siekmann L (2001) Establishing a reference system in clinical enzymology. Clin Chem Lab Med 39:795–800

    PubMed  Article  CAS  Google Scholar 

  • Salleo A, Taylor ST, Martin MC, Panero W, Jeanloz R, Sands T, Génin FY (2003) Laser driven phase transformations in amorphous silica. Nat Mat 2(12):796

    Article  CAS  Google Scholar 

  • Sharma S, Goswami A, Singh NJ, Kabilan L, Deodhar SS (1996) Immunogenicity of the nonrepetitive regions of the circumsporozoite protein of Plasmodium knowlesi. Am J Trop Med Hyg 55:635–641

    PubMed  CAS  Google Scholar 

  • Sun Q, Wang Q, Rao BK, Jena P (2004) Electronic structure and bonding of Au on a SiO2 Cluster: A nanobullet for tumors. Phys Rev Lett 93(18):186803

    PubMed  Article  CAS  Google Scholar 

  • Suzuki K, Ikari K, Imai H (2004) Synthesis of silica nanoparticles having a well-ordered mesostructure using a double surfactant system. J Am Chem Soc 126(2):462–463

    PubMed  Article  CAS  Google Scholar 

  • Ulrichs C, Mewis I, Goswami A (2005) Crop diversification aiming nutritional security in West Bengal—biotechnology of stinging capsules in nature’s water-blooms. Ann Tech Issue of State Agri Technologists Service Assoc. ISSN 0971-975X, pp 1–18

  • Ulrichs C, Entenmann S, Goswami A, Mewis I (2006a) Abrasive und hydrophil/lipophile Effekte unterschiedlicher inerter Stäube im Einsatz gegen Schadinsekten am Beispiel des Kornkäfers Sitophilus granarius L. Gesunde Pflanze 58:173–181

    Article  CAS  Google Scholar 

  • Ulrichs C, Goswami A, Mewis I (2006b) Amorphe silikathaltige Stäube, physikalisch wirkende Insektizide für den Gartenbau? 43. Wissenschaftliche Arbeitstagung der Deutschen Gartenbauwissen-schaftlichen Gesellschaft e.V, vol. 24. BHGL Schriftenreihe, Potsdam, p 116

    Google Scholar 

  • Ulrichs C, Krause F, Rocksch T, Goswami A, Mewis I (2006c) Electrostatic application of inert silica dust based insecticides to plant surfaces. In: 58th Int. Symposium on Crop Protection, May 23rd, Ghent University, Proc. 121

  • Ulrichs C, Krause F, Rocksch T, Goswami A, Mewis I (2006d) Electrostatic application of inert silica dust based insecticides onto plant surfaces. Commun Agric Appl Biol Sci 71:171–178

    PubMed  CAS  Google Scholar 

  • Ulrichs Ch, Chakrabarty R, Mewis I, Goswami A (2006e) Red tides of history: biotechnology of water bloom—I. In: International Seminar on Water, 3–4 March, Department of History DRS Programme (PHASE-I) Jadavpur University, Kolkata, India. Proceedings Book Volume. 11–12

  • Ulrichs Ch, Chakrabarty R, Mewis I, Goswami A (2006f) Red tides of history: biotechnology of water bloom—II. In: International Seminar on Water, 3–4 March, Department of History DRS Programme (PHASE-I) Jadavpur University, Kolkata, India. Proceedings Book Volume. pp 11–12

  • Ulrichs Ch, Mucha-Pelzer T, Reichmuth Ch, Goswami A, Mewis I (2006g) Amorphe silikatreiche Stäube –Wirkung auf Insekten. In: Fachveranstaltung des Umweltbundesamtes Berlin: Gesundheitsschutz durch Schädlingsbekämpfung-weiterhin möglich, Berlin

  • Ulrichs C, Goswami A, Mewis I (2007) Nano-structured silica—physical active pesticides for urban settings. In: Proceedings of the second international symposium on plant protection and plant health in Europe, DPG-BCPC, Berlin, 10–12 May 2007

  • Watts DC, Hindi AA (1999) Intrinsic “soft-start” polymerization shrinkage-kinetics in an acrylate-based resin composite. Dent Mater 15:39–45

    PubMed  Article  CAS  Google Scholar 

  • Wendt SL (1987) The effect of heat as a secondary cure upon the physical properties of three composite resins: I. Diametral tensile strength, compressive strength and marginal dimensional stability. Quintessence Int 18:265–271

    PubMed  Google Scholar 

  • Wiseman A (1985) Handbook of enzyme biotechnology. Horwood, Chichester

    Google Scholar 

  • Xu HHK (2000) Whisker-reinforced heat-cured dental resin composites: effects of filler level and heat-cure temperature and time. J Dent Res 79:1392–1397

    PubMed  CAS  Google Scholar 

  • Xu, HHK, Smith DT, Schumacher GE, Eichmiller FC, Antonucci JM (2000) Indentation modulus and hardness of whisker-reinforced heat-cured dental resin composites. Dent Mater 16:248–254

    PubMed  Article  CAS  Google Scholar 

  • Yokoyoma M, Okano T (1996) Targetable drug carriers: present status and a future perspective. Adv Drug Delivery Rev 21:77–80

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the help rendered by Subash Chandra Mohapatra, Department of Chemistry, University of Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. K. Barik.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Barik, T.K., Sahu, B. & Swain, V. Nanosilica—from medicine to pest control. Parasitol Res 103, 253 (2008). https://doi.org/10.1007/s00436-008-0975-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00436-008-0975-7

Keywords

  • Silica Nanoparticles
  • Fumed Silica
  • Nuclear Polyhedrosis Virus
  • Cuticular Lipid
  • Electron Microscope Photograph