Skip to main content

Advertisement

Log in

Molecular characterization of Cryptosporidium from animal sources in Qinghai province of China

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The presence of Cryptosporidium oocysts in 20 zoo animals of the Xining Zoo, 16 farm yaks and 42 farm goats in Qinghai province, China was investigated by an immunofluorescence test (IFT). The species and/or genotypes were determined by nested polymerase chain reaction (PCR) and sequence analysis of a fragment of the small subunit (SSU) rRNA gene. Cryptosporidium oocysts were found in 16 zoo animals, 2 yaks, and 15 goats by IFT. The IFT positive samples were further investigated by PCR, and 16 of them were found to be positive by that method also. Sequence analysis of the PCR products derived from Cryptosporidium oocysts from Black leopard (Panthera pardus), Heijing He (Grus nigricollis), Barbary sheep (Ammotragus lervia), Takin (Budorcas taxicolor), Lesser panda (Ailurus fulgens), and White-eared pheasant (Crossoptilon crossoptilon) fecal samples matched that of Cryptosporidium parvum mouse genotype. Sequence analyses of other PCR products were consistent with cervine genotype Cryptosporidium from Ibex (Capra ibex), a novel Cryptosporidium genotype from a wild yak (Bos mutus), C. bovis–like genotype from one goat sample and also a novel Cryptosporidium genotype from one other separate goat sample. The present work reports the first data on Cryptosporidium infections in animals from the Qinghai province of mountainous central western China and the first findings of the ‘cervine’ genotype in Capra ibex, C. bovis–like genotype and the new Cryptosporidium spp. in farm goat and in wild yak.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alves M, Xiao L, Antunes F, Lemos V, Zhou L, Cama V, Barao da Cunha M, Matos O, Antunes F (2005) Occurrence and molecular characterization of Cryptosporidium spp. in mammals and reptiles at the Lisbon Zoo. Parasitol Res 97:108–112

    Article  PubMed  Google Scholar 

  • Anderson BC (1991) Prevalence of Cryptosporidium muris-like oocysts among cattle populations of the United States, preliminary report. J Protozool 38:14–15

    Google Scholar 

  • Appelbee AJ, Thompson RC, Olson ME (2005) Giardia and Cryptosporidium in mammalian wildlife-current status and future needs. Trends Parasitol 21:370–376

    Article  PubMed  Google Scholar 

  • Bajer A, Caccio S, Bednarska M, Behnke JM, Pieniazek NJ, Sinski E (2003) Preliminary molecular characterization of Cryptosporidium parvum isolates of wildlife rodents from Poland. J Parasitol 89:1053–1055

    Article  PubMed  CAS  Google Scholar 

  • Bomfim TC, Huber F, Gomes RS, Alves LL (2005) Natural infection by Giardia sp. and Cryptosporidium sp. in dairy goats, associated with possible risk factors of the studied properties. Vet Parasitol 134:9–13

    Article  PubMed  CAS  Google Scholar 

  • da Silva AJ, Caccio S, Williams C, Won KY, Nace EK, Whittier C, Pieniazek NJ, Eberhard ML (2003) Molecular and morphologic characterization of a Cryptosporidium genotype identified in lemurs. Vet Parasitol 111:297–307

    Article  PubMed  Google Scholar 

  • de Graaf DC, Vanopdenbosch E, Ortega-Mora LM, Abbassi H, Peeters JE (1999) A review of the importance of cryptosporidiosis in farm animals. Int J Parasitol 29:1269–1287

    Article  PubMed  Google Scholar 

  • Fayer R (2004) Cryptosporidium: a water-borne zoonotic parasite. Vet Parasitol 126:37–56

    Article  PubMed  Google Scholar 

  • Fayer R, Phillips L, Anderson BC, Busk M (1991) Chronic cryptosporidiosis in a Bactrian camel (Camelus bactrianus). J Zoo Wildl Med 22:228–232

    Google Scholar 

  • Feltus DC, Giddings CW, Schneck BL, Monson T, Warshauer D, McEvoy JM (2006) Evidence supporting zoonotic transmission of Cryptosporidium spp. in Wisconsin. J Clin Microbiol 44:4303–4308

    Article  PubMed  CAS  Google Scholar 

  • Feng Y, Ortega Y, He G, Das P, Xu M, Zhang X, Fayer R, Gatei W, Cama V, Xiao L (2007) Wide geographic distribution of Cryptosporidium bovis and the deer-like genotype in bovines. Vet Parasitol 144:1–9

    Article  PubMed  Google Scholar 

  • Gómez MS, Torres J Gracenea M, Fernandez-Morán J, Gonzalez-Moreno O (2000) Further report on Cryptosporidium in Barcelona zoo mammals. Parasitol Res 86:318–323

    Article  PubMed  Google Scholar 

  • Gomez-Couso H, Mendez-Hermida F, Ares-Mazas E (2006) Levels of detection of Cryptosporidium oocysts in mussels (Mytilus galloprovincialis) by IFA and PCR methods. Vet Parasitol 141:60–65

    Article  PubMed  CAS  Google Scholar 

  • Kaminjolo JS, Adesiyun AA, Loregnard R, Kitson-Piggott W (1993) Prevalence of Cryptosporidium oocysts in livestock in Trinidad and Tobago. Vet Parasitol 45:209–213

    Article  PubMed  CAS  Google Scholar 

  • Karanis P, Kourenti C, Smith H (2007) Water-borne transmission of protozoan parasites: a review of world-wide outbreaks and lessons we learnt. Journal Water and Health 5:1–38

    Article  Google Scholar 

  • Leoni F, Amar C, Nichols G, Pedraza-Diaz S, McLauchlin J (2006) Genetic analysis of Cryptosporidium from 2414 humans with diarrhoea in England between 1985 and 2000. J Med Microbiol 55:703–707

    Article  PubMed  CAS  Google Scholar 

  • Majewska AC, Werner A, Sulima P, Luty T (2000) Prevalence of Cryptosporidium in sheep and goats bred on five farms in west-central region of Poland. Vet Parasitol 89:269–275

    Article  PubMed  CAS  Google Scholar 

  • Morgan UN, Sturdee AP, Singleton G, Gomez MS, Gracenta M, Torres J, Hamilton SG, Woodside DP, Thompson RCA (1999) The Cryptosporidium “mouse” genotype is conserved across geographic areas. J Clin Microbiol 37:1302–1305

    PubMed  CAS  Google Scholar 

  • Nagy B (1995) Epidemiological data on Cryptosporidium parvum infection of mammalian domestic animals in Hungary. Magy. Allatorv. Lapja 50:139–144

    Google Scholar 

  • Ng J, Pavlasek I, Ryan U (2006) Identification of novel Cryptosporidium genotypes from avian hosts. Appl Environ Microbiol 72:7548–7553

    Article  PubMed  CAS  Google Scholar 

  • Nichols RAB, Campbell BM, Smith HV (2003) Identification of Cryptosporidium spp. oocysts in United Kingdom non-carbonated natural mineral waters and drinking waters by using a modified nested PCR-restriction fragment length polymorphism assay. Appl Environ Microbiol 69:4183–4189

    Google Scholar 

  • Noordeen F, Faizal AC, Rajapakse RP, Horadagoda NU, Arulkanthan A (2001) Excretion of Cryptosporidium oocysts by goats in relation to age and season in the dry zone of Sri Lanka. Vet Parasitol 99:79–85

    Article  PubMed  CAS  Google Scholar 

  • Noordeen F, Horadagoda NU, Faizal AC, Rajapakse RP, Razak MA, Arulkanthan A (2002) Infectivity of Cryptosporidium parvum isolated from asymptomatic adult goats to mice and goat kids. Vet Parasitol 103:217–225

    Article  PubMed  CAS  Google Scholar 

  • Ong CS, Eisler DL, Alikhani A, Fung VW, Tomblin J, Bowie WR, Isaac-Renton JL (2002) Novel Cryptosporidium genotypes in sporadic cryptosporidiosis cases: first report of human infections with a cervine genotype. Emerg Infect Dis 8:263–268

    Article  PubMed  Google Scholar 

  • Ongerth J, Stibbs HH (1989) Prevalence of infection in dairy calves in western Washington. Am J Vet Res 50:1069–1070

    PubMed  CAS  Google Scholar 

  • Perz JF, Le Blancq SM (2001) Cryptosporidium parvum infection involving novel genotypes in wildlife from lower New York State. Appl Environ Microbiol 67:1154–1162

    Article  PubMed  CAS  Google Scholar 

  • Plutzer J, Karanis P (2007a) Genotype and subtype analyses of Cryptosporidium isolates from cattle in Hungary. Vet Parasitol 146:357–362

    Article  PubMed  CAS  Google Scholar 

  • Plutzer J, Karanis P (2007b) Molecular identification of Cryptosporidium saurophilum from corn snake (Elaphe guttata guttata). Parasitol Res 101:1141–1145

    Google Scholar 

  • Ryan U, Xiao L, Read C, Zhou L, Lal AA, Pavlasek I (2003) Identification of novel Cryptosporidium genotypes from the Czech Republic. Appl Environ Microbiol 69:4302–4307

    Article  PubMed  CAS  Google Scholar 

  • Ryan UM, Bath C, Robertson I, Read C, Elliot A, McInnes L, Traub R, Besier B (2005) Sheep may not be an important zoonotic reservoir for Cryptosporidium and Giardia parasites. Appl Environ Microbiol 71:4992–4997

    Article  PubMed  CAS  Google Scholar 

  • Santin M, Trout JM, Fayer R (2007) Prevalence and molecular characterization of Cryptosporidium and Giardia species and genotypes in sheep in Maryland. Vet Parasitol 146:17–24

    Article  PubMed  CAS  Google Scholar 

  • Soba B, Petrovec M, Mioc V, Logar J (2006) Molecular characterization of Cryptosporidium isolates from humans in Slovenia. Clin Microbiol Infect 12:918–921

    Article  PubMed  CAS  Google Scholar 

  • Wong PHP, Ong CSL (2006) Molecular characterization of the Cryptosporidium cervine genotype. Parasitology 133:693–700

    Article  PubMed  CAS  Google Scholar 

  • Xiao L, Ryan UM (2004) Cryptosporidiosis: an update in molecular epidemiology. Curr Opin Infect Dis 17:483–490

    Article  PubMed  Google Scholar 

  • Xiao L, Alderisio K, Limor J, Royer M, Lal AA (2000) Identification of species and sources of Cryptosporidium oocysts in storm waters with a small-subunit rRNA-based diagnostic and genotyping tool. Appl Environ Microbiol 66:5492–5498

    Article  PubMed  CAS  Google Scholar 

  • Xiao L, Fayer R, Ryan U, Upton J (2004) Cryptosporidium taxonomy: Recent advances and implications for public health. Clin Microbiol Rev 17:72–97

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported by Grant-in-Aid for Young Scientists, Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science, and from the 21st Century COE Program (A-1), Ministry of Education, Sports, Science, and Technology of Japan and from the Institutional funds of the Qinghai Academy of Veterinary and Animal Science in China. We are thankful to the zoo staff of the Xining Zoo and farmers for allowing us to collect essential materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiotis Karanis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karanis, P., Plutzer, J., Halim, N.A. et al. Molecular characterization of Cryptosporidium from animal sources in Qinghai province of China. Parasitol Res 101, 1575–1580 (2007). https://doi.org/10.1007/s00436-007-0681-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-007-0681-x

Keywords

Navigation