Skip to main content

Advertisement

Log in

Organization of H locus conserved repeats in Leishmania (Viannia) braziliensis correlates with lack of gene amplification and drug resistance

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Resistance to antimonials is a major problem when treating visceral leishmaniasis in India and has already been described for New World parasites. Clinical response to meglumine antimoniate in patients infected with parasites of the Viannia sub-genus can be widely variable, suggesting the presence of mechanisms of drug resistance. In this work, we have compared L. major and L. braziliensis mutants selected in different drugs. The cross-resistance profiles of some cell lines resembled those of mutants bearing H locus amplicons. However, amplified episomal molecules were exclusively detected in L. major mutants. The analysis of the L. braziliensis H region revealed a strong conservation of gene synteny. The typical intergenic repeats that are believed to mediate the amplification of the H locus in species of the Leishmania sub-genus are partially conserved in the Viannia species. The conservation of these non-coding elements in equivalent positions in both species is indicative of their relevance within this locus. The absence of amplicons in L. braziliensis suggests that this species may not favour extra-chromosomal gene amplification as a source of phenotypic heterogeneity and fitness maintenance in changing environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Finland)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aggarwal G, Worthey EA, McDonagh PD, Myler PJ (2003) Importing statistical measures into Artemis enhances gene identification in the Leishmania Genome Project. BMC Bioinformatics 4:23

    Article  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Anacleto C, Abdo MC, Ferreira AV, Murta SM, Romanha AJ, Fernandes AP, Moreira ES (2003) Structural and functional analysis of an amplification containing a PGPA gene in a glucantime-resistant Leishmania (Viannia) guyanensis cell line. Parasitol Res 90:110–118

    PubMed  Google Scholar 

  • Beverley SM (1991) Gene amplification in Leishmania. Annu Rev Microbiol 45:417–444

    Article  PubMed  CAS  Google Scholar 

  • Borst P, Ouellette M (1995) New mechanisms of drug resistance in parasitic protozoa. Annu Rev Microbiol 49:427–460

    Article  PubMed  CAS  Google Scholar 

  • Callahan HL, Beverley SM (1991) Heavy metal resistance: a new role for P-glycoproteins in Leishmania. J Biol Chem 266:18427–18430

    PubMed  CAS  Google Scholar 

  • Callahan HL, Beverley SM (1992) A member of the aldoketo reductase family confers methotrexate resistance in Leishmania. J Biol Chem 267:24165–24168

    PubMed  CAS  Google Scholar 

  • Carver TJ, Rutherford KM, Berriman M, Rajandream MA, Barrell BG, Parkhill J (2005) ACT: the Artemis comparison tool. Bioinformatics 21:3422–3423

    Article  PubMed  CAS  Google Scholar 

  • Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31:3497–3500

    Article  PubMed  CAS  Google Scholar 

  • Chiquero MJ, Olmo A, Navarro P, Ruiz-Perez LM, Castanys S, Gonzalez-Pacanowska D, Gamarro F (1994) Amplification of the H locus in Leishmania infantum. Biochim Biophys Acta 1227:188–194

    PubMed  Google Scholar 

  • Clayton C, Adams M, Almeida R, Baltz T, Barrett M, Bastien P, Belli S, Beverley S, Biteau N, Blackwell J, Blaineau C, Boshart M, Bringaud F, Cross G, Cruz A, Degrave W, Donelson J, El-Sayed N, Fu G, Ersfeld K, Gibson W, Gull K, Ivens A, Kelly J, Vanhamme L et al (1998) Genetic nomenclature for Trypanosoma and Leishmania. Mol Biochem Parasitol 97:221–224

    Article  PubMed  CAS  Google Scholar 

  • Croft SL, Sundar S, Fairlamb AH (2006) Drug resistance in Leishmaniasis. Clin Microbiol Rev 19:111–126

    Article  PubMed  CAS  Google Scholar 

  • Cruz A, Beverley SM (1990) Gene replacement in parasitic protozoa. Nature 348:171–173

    Article  PubMed  CAS  Google Scholar 

  • Delcher AL, Harmon D, Kasif S, White O, Salzberg SL (1999) Improved microbial gene identification with GLIMMER. Nucleic Acids Res 27:4636–4641

    Article  PubMed  CAS  Google Scholar 

  • Dey S, Ouellette M, Lightbody J, Papadopoulou B, Rosen BP (1996) An ATP-dependent As(III)–glutathione transport system in membrane vesicles of Leishmania tarentolae. Proc Natl Acad Sci USA 93:2192–2197

    Article  PubMed  CAS  Google Scholar 

  • El Fadili K, Messier N, Leprohon P, Roy G, Guimond C, Trudel N, Saravia NG, Papadopoulou B, Legare D, Ouellette M (2005) Role of the ABC transporter MRPA (PGPA) in antimony resistance in Leishmania infantum axenic and intracellular amastigotes. Antimicrob Agents Chemother 49:1988–1993

    Article  PubMed  Google Scholar 

  • Ellenberger TE, Beverley SM (1989) Multiple drug resistance and conservative amplification of the H region in Leishmania major. J Biol Chem 264:15094–15103

    PubMed  CAS  Google Scholar 

  • El-Sayed NM, Myler PJ, Blandin G, Berriman M, Crabtree J, Aggarwal G, Caler E, Renauld H, Worthey EA, Hertz-Fowler C, Ghedin E, Peacock C, Bartholomeu DC, Haas BJ, Tran AN, Wortman JR, Alsmark UC, Angiuoli S, Anupama A, Badger J, Bringaud F, Cadag E, Carlton JM, Cerqueira GC, Creasy T, Delcher AL, Djikeng A, Embley TM, Hauser C, Ivens AC, Kummerfeld SK, Pereira-Leal JB, Nilsson D, Peterson J, Salzberg SL, Shallom J, Silva JC, Sundaram J, Westenberger S, White O, Melville SE, Donelson JE, Andersson B, Stuart KD, Hall N (2005) Comparative genomics of trypanosomatid parasitic protozoa. Science 309:404–409

    Article  PubMed  CAS  Google Scholar 

  • Ewing B, Green P (1998) Base-calling of automated sequencer traces using Phred. II. Error probabilities. Genome Res 8:186–194

    PubMed  CAS  Google Scholar 

  • Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using Phred. I. Accuracy assessment. Genome Res 8:175–185

    PubMed  CAS  Google Scholar 

  • Feinberg AP, Vogelstein B (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132:6–13

    Article  PubMed  CAS  Google Scholar 

  • Fu G, Barker DC (1998) Characterisation of Leishmania telomeres reveals unusual telomeric repeats and conserved telomere-associated sequence. Nucleic Acids Res 26:2161–2167

    Article  PubMed  CAS  Google Scholar 

  • Garraway LA, Tosi LR, Wang Y, Moore JB, Dobson DE, Beverley SM (1997) Insertional mutagenesis by a modified in vitro Ty1 transposition system. Gene 198:27–35

    Article  PubMed  CAS  Google Scholar 

  • Genest PA, ter Riet B, Dumas C, Papadopoulou B, van Luenen HG,Borst P (2005) Formation of linear inverted repeat amplicons following targeting of an essential gene in Leishmania. Nucleic Acids Res 33:1699–1709

    Article  PubMed  CAS  Google Scholar 

  • Gordon D, Abajian C, Green P (1998) Consed: a graphical tool for sequence finishing. Genome Res 8:195–202

    PubMed  CAS  Google Scholar 

  • Grondin K, Papadopoulou B, Ouellette M (1993) Homologous recombination between direct repeat sequences yields P-glycoprotein containing amplicons in arsenite resistant Leishmania. Nucleic Acids Res 21:1895–1901

    Article  PubMed  CAS  Google Scholar 

  • Grondin K, Roy G, Ouellette M (1996) Formation of extrachromosomal circular amplicons with direct or inverted duplications in drug-resistant Leishmania tarentolae. Mol Cell Biol 16:3587–3595

    PubMed  CAS  Google Scholar 

  • Guimond C, Trudel N, Brochu C, Marquis N, El Fadili A, Peytavi R, Briand G, Richard D, Messier N, Papadopoulou B, Corbeil J, Bergeron MG, Legare D, Ouellette M (2003) Modulation of gene expression in Leishmania drug resistant mutants as determined by targeted DNA microarrays. Nucleic Acids Res 31:5886–5896

    Article  PubMed  CAS  Google Scholar 

  • Haimeur A, Ouellette M (1998) Gene amplification in Leishmania tarentolae selected for resistance to Sodium Stibogluconate. Antimicrob Agents Chemother 42:1689–1694

    PubMed  CAS  Google Scholar 

  • Haimeur A, Brochu C, Genest P, Papadopoulou B, Ouellette M (2000) Amplification of the ABC transporter gene PGPA and increased trypanothione levels in potassium antimonyl tartrate (SbIII) resistant Leishmania tarentolae. Mol Biochem Parasitol 108:131–135

    Article  PubMed  CAS  Google Scholar 

  • Halligan DL, Eyre-Walker A, Andolfatto P, Keightley PD (2004) Patterns of evolutionary constraints in intronic and intergenic DNA of Drosophila. Genome Res 14:273–279

    Article  PubMed  CAS  Google Scholar 

  • Hastings PJ, Bull HJ, Klump JR, Rosenberg SM (2000) Adaptive amplification: an inducible chromosomal instability mechanism. Cell 103:723–731

    Article  PubMed  CAS  Google Scholar 

  • Ivens AC, Peacock CS, Worthey EA, Murphy L, Aggarwal G, Berriman M, Sisk E, Rajandream MA, Adlem E, Aert R, Anupama A, Apostolou Z, Attipoe P, Bason N, Bauser C, Beck A, Beverley SM, Bianchettin G, Borzym K, Bothe G, Bruschi CV, Collins M, Cadag E, Ciarloni L, Clayton C, Coulson RM, Cronin A, Cruz AK, Davies RM, De Gaudenzi J, Dobson DE, Duesterhoeft A, Fazelina G, Fosker N, Frasch AC, Fraser A, Fuchs M, Gabel C, Goble A, Goffeau A, Harris D, Hertz-Fowler C, Hilbert H, Horn D, Huang Y, Klages S, Knights A, Kube M, Larke N, Litvin L, Lord A, Louie T, Marra M, Masuy D, Matthews K, Michaeli S, Mottram JC, Muller-Auer S, Munden H, Nelson S, Norbertczak H, Oliver K, O’Neil S, Pentony M, Pohl TM, Price C, Purnelle B, Quail MA, Rabbinowitsch E, Reinhardt R, Rieger M, Rinta J, Robben J, Robertson L, Ruiz JC, Rutter S, Saunders D, Schafer M, Schein J, Schwartz DC, Seeger K, Seyler A, Sharp S, Shin H, Sivam D, Squares R, Squares S, Tosato V, Vogt C, Volckaert G, Wambutt R, Warren T, Wedler H, Woodward J, Zhou S, Zimmermann W, Smith DF, Blackwell JM, Stuart KD, Barrell B,Myler PJ (2005) The genome of the kinetoplastid parasite, Leishmania major. Science 309:436–442

    Article  PubMed  Google Scholar 

  • Kapler GM, Coburn CM, Beverley SM (1990) Stable transfection of the human parasite Leishmania major delineates a 30-kilobases region sufficient for extrachromosomal replication and expression. Mol Cell Biol 10:1084–1094

    PubMed  CAS  Google Scholar 

  • Laurentino EC, Ruiz JC, Fazelinia G, Myler PJ, Degrave W, Alves-Ferreira M, Ribeiro JMC, Cruz AK (2004) A survey of Leishmania braziliensis genome by shotgun sequencing. Mol Biochem Parasitol 137:81–86

    Article  PubMed  Google Scholar 

  • Legare D, Richard D, Mukhopadhyay R, Stierhof YD, Rosen BP, Haimeur A, Papadopoulou B, Ouellette M (2001) The Leishmania ATP-binding cassette protein PGPA is an intracellular metal-thiol transporter ATPase. J Biol Chem 276:26301–26307

    Article  PubMed  CAS  Google Scholar 

  • Marchini JF, Cruz AK, Beverley SM, Tosi LR (2003) The H region HTBF gene mediates terbinafine resistance in Leishmania major. Mol Biochem Parasitol 131:77–81

    Article  PubMed  CAS  Google Scholar 

  • Moreira ES, Anacleto C, Petrillo-Peixoto ML (1998) Effect of glucantime on field and patient isolates of New World Leishmania: use of growth parameters of promastigotes to assess antimony susceptibility. Parasitol Res 84:720–726

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay R, Dey S, Xu N, Gage D, Lightbody J, Ouellette M, Rosen BP (1996) Trypanothione overproduction and resistance to antimonials and arsenicals in Leishmania. Proc Natl Acad Sci USA 93:10383–10387

    Article  PubMed  CAS  Google Scholar 

  • Myler PJ, Audleman L, deVos T, Hixson G, Kiser P, Lemley C, Magness C, Rickel E, Sisk E, Sunkin S, Swartzell S, Westlake T, Bastien P, Fu G, Ivens A, Stuart K (1999) Leishmania major Friedlin chromosome 1 has an unusual distribution of protein-coding genes. Proc Natl Acad Sci USA 96:2902–2906

    Article  PubMed  CAS  Google Scholar 

  • Ouellette M, Hettema E, Wust D, Fase-Fowler F, Borst P (1991) Direct and inverted DNA repeats associated with P-glycoprotein gene amplification in drug resistant Leishmania. Embo J 10:1009–1016

    PubMed  CAS  Google Scholar 

  • Ouellette M, Haimeur A, Grondin K, Legare D, Papadopoulou B (1998) Amplification of ABC transporter gene pgpA and of other heavy metal resistance genes in Leishmania tarentolae and their study by gene transfection and gene disruption. Methods Enzymol 292:182–193

    Article  PubMed  CAS  Google Scholar 

  • Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85:2444–2448

    Article  PubMed  CAS  Google Scholar 

  • Pedrosa AL, Silva AM, Ruiz JC, Cruz AK (2006) Characterization of LST-R533: uncovering a novel repetitive element in Leishmania. Int J Parasitol 36:211–217

    Article  PubMed  CAS  Google Scholar 

  • Pourshafie M, Morand S, Virion A, Rakotomanga M, Dupuy C, Loiseau PM (2004) Cloning of S-adenosyl-l-methionine: C-24-Δ-sterol-methyltransferase (ERG6) from Leishmania donovani and characterization of mRNAs in wild-type and amphotericin B-resistant promastigotes. Antimicrob Agents Chemother 48:2409–2414

    Article  PubMed  CAS  Google Scholar 

  • Rojas R, Valderrama L, Valderrama M, Varona MX, Ouellette M, Saravia NG (2006) Resistance to antimony and treatment failure in human Leishmania (Viannia) infection. J Infect Dis 193:1375–1383

    Article  PubMed  CAS  Google Scholar 

  • Romero GA, Vinitius De Farias Guerra M, Gomes Paes M, de Oliveira Macedo V (2001) Comparison of cutaneous leishmaniasis due to Leishmania (Viannia) braziliensis and L. (V.) guyanensis in Brazil: clinical findings and diagnostic approach. Clin Infect Dis 32:1304–1312

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Sampaio MCR, Traub-Cseko YM (2003) The 245 kb amplified chromosome of Leishmania (V.) braziliensis contains a biopterin transporter gene. Mem Inst Oswaldo Cruz 98:377–378

    Article  PubMed  CAS  Google Scholar 

  • Stark GR, Wahl GM (1984) Gene amplification. Annu Rev Biochem 53:447–491

    Article  PubMed  CAS  Google Scholar 

  • Sundar S (2001) Drug resistance in Indian visceral leishmaniasis. Trop Med Int Health 6:849–854

    Article  PubMed  CAS  Google Scholar 

  • Sunkin SM, Kiser P, Myler PJ, Stuart K (2000) The size difference between Leishmania major Friedlin chromosome one homologues is localized to sub-telomeric repeats at one chromosomal end. Mol Biochem Parasitol 109:1–15

    Article  PubMed  CAS  Google Scholar 

  • Tiwari S, Ramachandran S, Bhattacharya A, Bhattacharya S, Ramaswamy R (1997) Prediction of probable genes by Fourier analysis of genomic sequences. Comput Appl Biosci 13:263–270

    PubMed  CAS  Google Scholar 

  • Tosi LR, Beverley SM (2000) cis and trans factors affecting Mos1 mariner evolution and transposition in vitro, and its potential for functional genomics. Nucleic Acids Res 28:784–790

    Article  PubMed  CAS  Google Scholar 

  • Tosi LR, Casagrande L, Beverley SM, Cruz AK (1997) Physical mapping across the dihydrofolate reductase-thymidylate synthase chromosome of Leishmania major. Parasitology 114(Pt 6):521–529

    PubMed  CAS  Google Scholar 

  • Tramontano A, Scarlato V, Barni N, Cipollaro M, Franze A, Macchiato MF, Cascino A (1984) Statistical evaluation of the coding capacity of complementary DNA strands. Nucleic Acids Res 12:5049–5059

    Article  PubMed  CAS  Google Scholar 

  • Wickstead B, Ersfeld K, Gull K (2003) Repetitive elements in genomes of parasitic protozoa. Microbiol Mol Biol Rev 67:360–375

    Article  PubMed  CAS  Google Scholar 

  • Yardley V, Ortuno N, Llanos-Cuentas A, Chappuis F, Doncker SD, Ramirez L, Croft S, Arevalo J, Adaui V, Bermudez H, Decuypere S, Dujardin JC (2006) American tegumentary leishmaniasis: is antimonial treatment outcome related to parasite drug susceptibility? J Infect Dis 194:1168–1175

    Article  PubMed  Google Scholar 

  • Yasui K, Mihara S, Zhao C, Okamoto H, Saito-Ohara F, Tomida A, Funato T, Yokomizo A, Naito S, Imoto I, Tsuruo T, Inazawa J (2004) Alteration in copy numbers of genes as a mechanism for acquired drug resistance. Cancer Res 64:1403–1410

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Marlei J. Augusto for technical assistance. This work was supported by the CNPq; FAPESP, 04/03397-0 and UNDP/WORLD BANK/WHO Special Programme for Research and Training in Tropical Diseases; FCD; WCZL and FMS were sponsored by FAPESP (04/15619-7; 05/02997-6; 01/02527-9). The L. braziliensis sequence data were produced by the Pathogen Sequencing Unit at the Wellcome Trust Sanger Institute and are available from the website http://www.sanger.ac.uk/Projects/L_braziliensis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz R. O. Tosi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dias, F.C., Ruiz, J.C., Lopes, W.C.Z. et al. Organization of H locus conserved repeats in Leishmania (Viannia) braziliensis correlates with lack of gene amplification and drug resistance. Parasitol Res 101, 667–676 (2007). https://doi.org/10.1007/s00436-007-0528-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-007-0528-5

Keywords

Navigation