Parasitology Research

, Volume 101, Issue 3, pp 517–525 | Cite as

Evaluation of recombinant HP6-Tsag, an 18 kDa Taenia saginata oncospheral adhesion protein, for the diagnosis of cysticercosis

  • Elizabeth Ferrer
  • Luís Miguel González
  • José Ángel Martínez-Escribano
  • María Eugenia González-Barderas
  • María Milagros Cortéz
  • Iris Dávila
  • Leslie J. S. HarrisonEmail author
  • R. Michael E. ParkhouseEmail author
  • Teresa Gárate
Original Paper


With the objective of providing inexpensive and reproducible assays for the detection of antibodies indicating exposure to Taenia saginata and Taenia solium, we have evaluated the diagnostic utility of the T. saginata oncosphere adhesion protein (HP6-Tsag), expressed in baculovirus (HP6-Bac) and bacteria (HP6-GST [glutathione S-transferase]), employing enzyme-linked immunosorbent assays (ELISAs) and sera from T. saginata infected cattle, T. solium infected pigs and serum and cerebrospinal fluid (CSF) samples from clinically defined T. solium neurocysticercosis (NCC) patients. The two recombinant proteins were antigenic in all three systems, with the signal to background ratio of the HP6-Bac ELISA slightly higher than that for the HP6-GST ELISA. Assay performance in cattle was similar to previously described peptide-based ELISA assays, although NCC sample sensitivity/specificity was marginally better. The sensitivity of the HP6-Bac and HP6-GST ELISAs was close for active human NCC (77.4 and 80.6% for serum and 76.9 and 73.1% for CSF samples, respectively). In inactive human NCC, however, the sensitivity of the HP6-Bac ELISA was almost twice that of the HP6-GST ELISA. Because peptides are relatively expensive and recombinant proteins are simple and economical to produce, the latter may provide useful reagents for antibody detection in countries with endemic cysticercosis/NCC.


Recombinant Protein Cysticercosis Baculovirus System Taenia Solium Porcine Cysticercosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This investigation received financial support from EU/INCO-DC (project CT95-0002), FIS (00/40702/1114) and ISCIII-Programa Intramural. Elizabeth Ferrer was supported by grants from AECI, ISCIII and RICET-FIS (RD 06/0021/0019). The authors would like to thank Maria Lares, Glenda Rojas, Yenny Alviarez (BIOMED) and Mercedes Rodríguez (ISCIII) for their collaboration in the collection of human serum samples. We also would like to thank Paloma Resino (INIA) for her collaboration in larvae handling. The experiments described in this paper comply with the current laws of Venezuela and Spain, the countries in which the work was performed.


  1. Abuseir S, Kuhne M, Schnieder T, Klein G, Epe C (2007) Evaluation of a serological method for the detection of Taenia saginata cysticercosis using serum and meat juice samples. Parasitol Res 100 (in press). DOI  10.1007/s00436-006-0429-z
  2. Benítez L, Gárate T, Harrison LJS, Kirkham P, Brookes SM, Parkhouse RME (1996) Cloning and sequencing of the gene encoding the principal 18-kDa secreted antigen of activated oncospheres of Taenia saginata. Mol Biochem Parasitol 78:265–268PubMedCrossRefGoogle Scholar
  3. Bonay P, González LM, Benítez L, Foster M, Harrison LJS, Parkhouse RME, Gárate T (2002) Genomic and functional characterization of a secreted antigen of Taenia saginata oncospheres. Mol Biochem Parasitol 121:269–273PubMedCrossRefGoogle Scholar
  4. Chung JY, Bahk YY, Huh S, Kang SY, Kong Y, Cho SY (1999) A recombinant 10 kDa protein of Taenia solium metacestodes specific to active neurocysticercosis. J Infect Dis 180:1307–1315PubMedCrossRefGoogle Scholar
  5. Del Brutto OH, Wadia NH, Dumas M, Cruz M, Tsang VC, Schantz PM (1996) Proposal of diagnostic criteria for human cysticercosis and neurocysticercosis. J Neurol Sci 42:1–6CrossRefGoogle Scholar
  6. Ferrer E, Benítez L, Foster-Cuevas M, Bryce D, Wamae LW, Onyango-Abuje JA, Gárate T, Harrison LJS, Parkhouse RME (2003) Taenia saginata derived synthetic peptides with potential for the diagnosis of bovine cysticercosis. Vet Parasitol 111:83–94PubMedCrossRefGoogle Scholar
  7. Ferrer E, Cortéz MM, Cabrera Z, Rojas G, Dávila I, De Noya BA, Perez HA, Fernandez I, Romero HU, Harrison LJS, Parkhouse RME, Gárate T (2005a) Oncospheral peptide-based ELISAs as potential seroepidemiological tools for Taenia solium cysticercosis/neurocysticercosis in Venezuela. Trans R Soc Trop Med Hyg 99:568–576PubMedCrossRefGoogle Scholar
  8. Ferrer E, González LM, Foster-Cuevas M, Cortéz MM, Dávila I, Rodríguez M, Sciutto E, Harrison LJS, Parkhouse RME, Gárate T (2005b) Taenia solium: characterization of a small heat shock protein (Tsol-sHSP35.6) and its possible relevance to the diagnosis and pathogenesis of neurocysticercosis. Exp Parasitol 110:1–11PubMedCrossRefGoogle Scholar
  9. Ferrer E, Bonay P, Foster-Cuevas M, Gonzalez LM, Davila I, Cortez MM, Harrison LJS, Parkhouse RME, Garate T (2007) Molecular cloning and characterization of Ts8B1, Ts8B2 and Ts8B3, three new members of the Taenia solium metacestode 8 kDa diagnostic antigen family. Mol Biochem Parasitol 152:90–100PubMedCrossRefGoogle Scholar
  10. Fleury A, Beltran C, Ferrer E, Gárate T, Harrison LJS, Parkhouse RME, García E, Fragoso G, Costa-Cruz J, Biondi G, Agapejev S, Sciutto E (2003) Application of synthetic peptides to the diagnosis of neurocysticercosis. Trop Med Int Health 8:1124–1130PubMedCrossRefGoogle Scholar
  11. Greene RM, Hancock K, Wilkins PP, Tsang VC (2000) Taenia solium: molecular cloning and serologic evaluation of 14 and 18 kDa related, diagnostic antigens. J Parasitol 86:1001–1007PubMedGoogle Scholar
  12. Hancock K, Khan A, Williams FB, Yushak ML, Pattabhi S, Noh J, Tsang VC (2003) Characterization of the 8-Kilodalton Antigens of Taenia solium metacestodes and evaluation of their use in an enzyme-linked immunosorbent assay for serodiagnosis. J Clin Microbiol 41:2577–2586PubMedCrossRefGoogle Scholar
  13. Hancock K, Pattabhi S, Greene RM, Yushak ML, Williams F, Khan A, Priest JW, Levine MZ, Tsang VC (2004) Characterization and cloning of GP50, a Taenia solium antigen diagnostic for cysticercosis. Mol Biochem Parasitol 133:115–124PubMedCrossRefGoogle Scholar
  14. Harrison LJS, Parkhouse RME (1986) Passive protection against Taenia saginata infection in cattle by a mouse monoclonal antibody reactive with the surface of the invasive oncosphere. Parasite Immunol 8:319–332PubMedCrossRefGoogle Scholar
  15. Harrison LJS, Parkhouse RME (1989) Taenia saginata and Taenia solium: reciprocal models. Acta Leiden 57:143–152PubMedGoogle Scholar
  16. Harrison LJS, Parkhouse RME (2001) Antigens of parasitic helminthes in protection and pathology. In: Chowdhury N, Tada I (eds) Perspectives in helminthology. Science Publishers, Inc. Enfield (NH), USA, Plymouth UK, pp 369–384Google Scholar
  17. Harrison LJS, Sewell MMH (1991) The zoonotic Taeniae of Africa. In: MacPherson CNL, Craig PS (eds) Parsitic helminths and zoonoses in Africa. Unwin Hyman, London, pp 54–76Google Scholar
  18. Harrison LJS, Joshua GWP, Wright SH, Parkhouse RME (1989) Specific detection of circulating surface/secreted glycoproteins of viable cysticerci in Taenia saginata cysticercosis. Parasite Immunol 11:351–370PubMedCrossRefGoogle Scholar
  19. Harrison LJS, Gárate T, Bryce DM, González LM, Foster-Cuevas M, Wamae LW, Onyango-Abuje JA, Parkhouse RME (2005) Ag-ELISA and PCR for monitoring the vaccination of cattle against Taenia saginata cysticercosis using an oncospheral adhesion protein (HP6) with surface and secreted localisation. Trop Anim Health Prod 37:103–120PubMedCrossRefGoogle Scholar
  20. Hubert K, Andriantsimahavandy A, Michault A, Frosch M, Muhlschlegel F (1999) Serological diagnosis of human cysticercosis by use of recombinant antigens from Taenia solium cysticerci. Clin Diagn Lab Immunol 6:479–482PubMedGoogle Scholar
  21. Ito A, Plancarte A, Ma L (1998) Novel antigens for neurocysticercosis: simple method for preparation and evaluation for serodiagnosis. Am J Trop Med Hyg 59:291–294PubMedGoogle Scholar
  22. Larralde C, Laclette JP, Owen CS, Madrazo I, Sandoval M, Bojalil R, Sciutto E, Contreras L, Arzate J, Diaz ML (1986) Reliable serology of Taenia solium cysticercosis with antigens from cyst vesicular fluid: ELISA and hemaglutination tests. Am J Trop Med Hyg 35:965–973PubMedGoogle Scholar
  23. Lightowlers MW, Rolfe R, Gauci CG (1996) Taenia saginata: vaccination against cysticercosis in cattle with recombinant oncosphere antigens. Exp Parasitol 84:330–338PubMedCrossRefGoogle Scholar
  24. Obregon-Henao A, Gil DL, Gomez DI, Sanzon F, Teale JM, Restrepo BI (2001) The role of N-linked carbohydrates in the antigenicity of Taenia solium metacestode glycoproteins of 12, 16 and 18 kDa. Mol Biochem Parasitol 114:209–215PubMedCrossRefGoogle Scholar
  25. Restrepo BI, Obregon-Henao A, Mesa M, Gil DL, Ortiz BL, Mejía JS, Villota GE, Sanzón F, Teale JM (2000) Characterization of the carbohydrate components of Taenia solium metacestode glycoprotein antigens. Int J Parasitol 30:689–696PubMedCrossRefGoogle Scholar
  26. Roman G, Sotelo J, Del Brutto O, Flisser A, Dumas M, Wadia N, Botero D, Cruz M, García H, De Bittencourt P, Trelles L, Arriagada C, Lorenzana P, Nash T, Spina-França A (2000) A proposal to declare neurocysticercosis an international reportable disease. Bull World Health Organ 78:399–406PubMedGoogle Scholar
  27. Sako Y, Nakao M, Ikejima T, Piao XZ, Nakaya K, Ito A (2000) Molecular characterization and diagnostic value of Taenia solium low-molecular-weight antigens genes. J Clin Microbiol 38:4439–4444PubMedGoogle Scholar
  28. Schantz PM, Moore AC, Muñoz JL, Hartman BJ, Schaefer JA, Aron AM, Persuad D, Sarti E, Wilson M, Flisser A (1992) Neurocysticercosis in an Ortodox Jewish community in New York City. N Engl J Med 327:692–695PubMedCrossRefGoogle Scholar
  29. Tsang V, Brand JA, Boyer AE (1989) An enzyme-linked immunoelectrotransfer blot assay and glycoprotein antigens for diagnosing human cysticercosis (Taenia solium). J Infect Dis 159:50–59PubMedGoogle Scholar
  30. White AC (1997) Neurocysticercosis: a major cause of neurological disease worldwide. Clin Infect Dis 24:101–115PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Elizabeth Ferrer
    • 1
    • 2
    • 3
  • Luís Miguel González
    • 1
  • José Ángel Martínez-Escribano
    • 4
  • María Eugenia González-Barderas
    • 4
    • 8
  • María Milagros Cortéz
    • 3
  • Iris Dávila
    • 5
  • Leslie J. S. Harrison
    • 6
    Email author
  • R. Michael E. Parkhouse
    • 7
    Email author
  • Teresa Gárate
    • 1
  1. 1.Instituto de Salud Carlos IIICentro Nacional de MicrobiologíaMajadahonda, MadridSpain
  2. 2.Departamento de ParasitologíaUniversidad de Carabobo Sede AraguaMaracayVenezuela
  3. 3.Instituto de Investigaciones Biomédicas (BIOMED)Universidad de CaraboboMaracayVenezuela
  4. 4.Departamento de Mejora Genética y BiotecnologíaInstituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)MadridSpain
  5. 5.Departamento de ParasitologíaUniversidad de CaraboboValenciaVenezuela
  6. 6.Division of Veterinary Clinical Sciences, Centre for Tropical Veterinary Medicine, Royal (Dick) School of Veterinary Studies The University of Edinburgh, Easter Bush Veterinary CentreMidlothianUK
  7. 7.Parkhouse Instituto Gulbenkian de CiénciaOeirasPortugal
  8. 8.Fundación Jiménez DíazAvda. Reyes CatólicosMadridSpain

Personalised recommendations