Advertisement

Parasitology Research

, Volume 101, Issue 3, pp 493–503 | Cite as

Bayesian analysis of new and old malaria parasite DNA sequence data demonstrates the need for more phylogenetic signal to clarify the descent of Plasmodium falciparum

  • S. C. HagnerEmail author
  • B. Misof
  • W. A. Maier
  • H. Kampen
Original Paper

Abstract

Molecular systematic studies published during the last 15 years to clarify the phylogenetic relationships among the malaria parasites have led to two major hypotheses on the descent of Plasmodium falciparum: One supports an avian origin as a result of a relatively recent host switch, and another one favours the evolutionary development of P. falciparum together with its human host from primate ancestors. In this paper, we present phylogenetic analyses of three different Plasmodium genes, the nuclear 18 small sub-unit (SSU) ribosomal ribonucleic acid (rRNA), the mitochondrial cytochrome b (cyt b) and the plastid caseinolytic protease C (ClpC) gene, using numerous haemosporidian parasite DNA sequences obtained from the GenBank as well as several new sequences for major malaria parasites including the avian one Plasmodium cathemerium, which has never been considered in molecular phylogenetic analyses before. Most modern and sophisticated DNA substitution models based on Bayesian inference analysis were applied to estimate the cyt b and ClpC phylogenetic trees, whereas the 18 SSU rRNA gene was examined with regards to its secondary structure using PHASE software. Our results indicate that the data presently available are generally neither sufficient in number nor in information to solve the problem of the phylogenetic origin of P. falciparum.

Keywords

Malaria Human Malaria Parasite Genus Plasmodium Haemosporidian Parasite Avian Malaria Parasite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ayala FJ, Escalante AA, Rich SM (1999) Evolution of Plasmodium and the recent origin of the world populations of Plasmodium falciparum. Parassitologia 41:55–68PubMedGoogle Scholar
  2. Ayala FJ, Fitch WM (1992) Phylogeny of Plasmodium falciparum. Parasitol Today 8:74–75PubMedCrossRefGoogle Scholar
  3. Ayala FJ, Rich SM (2000) Genetic variation and the recent worldwide expansion of Plasmodium falciparum. Gene 261:161–170PubMedCrossRefGoogle Scholar
  4. Babiker HA, Walliker D (1997) Current views on the population structure of Plasmodium falciparum: implications for control. Parasitol Today 13:262–267PubMedCrossRefGoogle Scholar
  5. Bennett GF, Bishop MA, Peirce MA (1993) Checklist of the avian species of Plasmodium Marchiafava & Celli, 1885 Apicomplexa and their distribution by avian family and Wallacean life zones. Syst Parasitol 26:171–179CrossRefGoogle Scholar
  6. Carter R, Mendis KN (2002) Evolutionary and historical aspects of the burden of malaria. Clin Microbiol Rev 15:564–594PubMedCrossRefGoogle Scholar
  7. Carter R (2003) Speculations of the origins of Plasmodium vivax malaria. Trends Parasitol 19:214–219PubMedCrossRefGoogle Scholar
  8. Chauhan VS, Bhardwaj D (2003) Current status of malaria vaccine development. Adv Biochem Eng Biotech 84:143–182Google Scholar
  9. Coatney GR, Collins WE, Warren M, Contacos PG (1971) The primate malarias. National Institutes of Health, Bethesda, MDGoogle Scholar
  10. Coluzzi M (1999) The clay feet of the malaria giant and its African roots: hypothesis and inferences about origin, spread and control of Plasmodium falciparum. Parassitologia 41:277–283PubMedGoogle Scholar
  11. Conway DJ, Baum J (2002) In the blood—the remarkable ancestry of Plasmodium falciparum. Trends Parasitol 18:351–355PubMedCrossRefGoogle Scholar
  12. Corradetti A, Garnham PCC, Laird M (1963) New classification of the avian malaria parasites. Parasitology 5:1–4Google Scholar
  13. Egea N, Lang-Unnasch N (1995) Phylogeny of the large extrachromosomal DNA of organisms in the phylum Apicomplexa. J Eukaryot Microbiol 42:679–684PubMedCrossRefGoogle Scholar
  14. Escalante AA, Ayala FJ (1994) Phylogeny of the malarial genus Plasmodium, derived from rRNA gene sequences. Proc Natl Acad Sci USA 91:11373–11377PubMedCrossRefGoogle Scholar
  15. Escalante AA, Ayala FJ (1995) Evolutionary origin of Plasmodium and other Apicomplexa based on rRNA genes. Proc Natl Acad Sci USA 92:5793–5797PubMedCrossRefGoogle Scholar
  16. Escalante AA, Barrio E, Ayala FJ (1995) Evolutionary origin of human and primate malarias: evidence from the circumsporozoite protein gene. Mol Biol Evol 12:616–626PubMedGoogle Scholar
  17. Escalante AA, Goldman IF, de Rijk P, de Wachter R, Collins WE, Qari SH, Lal AA (1997) Phylogenetic study of the genus Plasmodium based on the secondary structure-based alignment of the small subunit ribosomal RNA. Mol Biochem Parasitol 90:317–321PubMedCrossRefGoogle Scholar
  18. Escalante AA, Freeland DE, Collins WE, Lal A (1998) The evolution of primate malaria parasites based on the gene encoding cytochrome b from the linear mitochondrial genome. Proc Natl Acad Sci USA 95:8124–8129PubMedCrossRefGoogle Scholar
  19. Fink E, Dann O (1967) Eine Weiterentwicklung des Roehl-Test zur Prüfung von Malariamitteln an Plasmodium cathemerium beim Kanarienvogel durch intravenöse Verabreichung. Z Tropenmed Parasitol 18:466–474PubMedGoogle Scholar
  20. Galtier N (2004) Sampling properties of the bootstrap support in molecular phylogeny: influence of nonindependence among sites. Syst Biol 53:38–46PubMedCrossRefGoogle Scholar
  21. Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW et al (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498–511PubMedCrossRefGoogle Scholar
  22. Garnham PCC (1966) Malaria parasites and other haemosporidia. Blackwell, OxfordGoogle Scholar
  23. Gehring CU (1974) Versuche zur Übertragung von Plasmodium cathemerium, einem der Vogelmalariaerreger, auf weiße Mäuse. PhD thesis, Med. Faculty, University of Bonn, GermanyGoogle Scholar
  24. Greenwood B, Mutabingwa T (2002) Malaria in 2002. Nature 415:670–672PubMedCrossRefGoogle Scholar
  25. Greenwood B, Bojang K, Whitty CJM, Targett GAT (2005) Malaria. Lancet 365:1487–1498PubMedCrossRefGoogle Scholar
  26. Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR et al (2002) The genome sequence of the malaria mosquito Anopheles gambiae. Science 298:129–149PubMedCrossRefGoogle Scholar
  27. Huelsenbeck JP (2001) MrBayes V3 b4 v2win: Bayesian inference of phylogeny. University of California—San Diego, La JollaGoogle Scholar
  28. Hughes A, Verra F (2002) Extensive polymorphism and ancient origin of Plasmodium falciparum. Trends Parasitol 18:348–351PubMedCrossRefGoogle Scholar
  29. Hume JCC, Lyons EL, Day KP (2003) Human migration, mosquitoes and the evolution of Plasmodium falciparum. Trends Parasitol 19:144–149PubMedCrossRefGoogle Scholar
  30. Jow H, Hudelot C, Rattray M, Higgs PG (2002) Bayesian phylogenetics using an RNA substitution model applied to early mammalian evolution. Mol Biol Evol 19:1591–1601PubMedGoogle Scholar
  31. Jow H, Gowri-Shankar V, Guillard B (2005) PHASE: a software package for phylogenetics and sequence evolution. University of Manchester, UKGoogle Scholar
  32. Joy DA, Feng X, Mu J, Furuya T, Chotivanich K, Krettli AU, Ho M, Wang A, White NJ, Suh E, Beerli P, Su X-Z (2003) Early origin and recent expansion of Plasmodium falciparum. Science 300:318–321PubMedCrossRefGoogle Scholar
  33. Kedzierski L, Escalante AA, Isea R, Black CG, Barnwell JW, Coppel RL (2002) Phylogenetic analysis of the genus Plasmodium based on the gene encoding adenylosuccinate lyase. Infect Genet Evol 1:297–301PubMedCrossRefGoogle Scholar
  34. Killick-Kendrick R, Peters W (1978) Rodent malaria. Academic, LondonGoogle Scholar
  35. Kissinger JC, Souza PC, Soares CO, Paul R, Wahl AM, Rathore D, McCutchan TF, Krettli AU (2002) Molecular phylogenetic analysis of the avian malarial parasite Plasmodium Novyella juxtanucleare. J Parasitol 88:769–773PubMedGoogle Scholar
  36. Landau I (1965) Description de Plasmodium chabaudi n. sp. de rongeur africains. C R Hebd Séances Acad Sci 260:3758–3761PubMedGoogle Scholar
  37. Landau I, Killick-Kendrick R (1966) Note préliminaire sur le cycle évolutif des deux Plasmodium du rongeur Thamnonmys rutilans de la République Centrafricaine. C R Hebd Séances Acad Sci 262:1113–1116Google Scholar
  38. Leclerc MC, Hugot JP, Durand P, Renaud F (2004) Evolutionary relationships between 15 Plasmodium species from new and old world primates (including humans): an 18S rDNA cladistic analysis. Parasitology 129:677–684PubMedCrossRefGoogle Scholar
  39. Maitland K, Bejon P, Newton CRJC (2003) Malaria. Curr Opin Infect Dis 16:389–395PubMedCrossRefGoogle Scholar
  40. McCutchan TF, Dame JB, Miller LH, Barnwell J (1984) Evolutionary relatedness of Plasmodium species as determined by the structure of DNA. Science 225:808–811PubMedCrossRefGoogle Scholar
  41. McCutchan TF, Kissinger JC, Touray MG, Rogers MJ, Li J, Sullivan M, Braga EM, Krettli AU, Miller LH (1996) Comparison of circumsporozoite proteins from avian and mammalian malarias: biological and phylogenetic implications. Proc Natl Acad Sci USA 93:11889–11894PubMedCrossRefGoogle Scholar
  42. McGhee RB (1951) The adaption of the avian malaria parasite Plasmodium lophurae to a continuous existence in infant mice. J Infect Dis 88:86–97PubMedGoogle Scholar
  43. McManus DP, Bowles J (1996) Molecular genetic approaches to parasite identification: their value in diagnostic parasitology and systematics. Int J Parasitol 26:687–704PubMedCrossRefGoogle Scholar
  44. Misof B, Anderson CL, Buckley TR, Erpenbeck D, Rickert A, Misof K (2002) An empirical analysis of mt 16S rRNA covarion-like evolution in insects: site-specific rate variation is clustered and frequently detected. J Mol Evol 55:460–469PubMedCrossRefGoogle Scholar
  45. Misof B, Fleck G (2003) Comparative analysis of mt 16S rRNA secondary structures of odonates and its relevance to phylogenetic problems in insect systematics. Insect Mol Biol 12:535–547PubMedCrossRefGoogle Scholar
  46. Mu J, Ferdig MT, Feng X, Joy DA, Duan J, Furuya T, Subramanian G, Aravind L, Cooper RA, Wootton JJ, Xiong M, Su XZ (2003) Multiple transporters associated with malaria responses to chloroquine and quinine. Mol Microbiol 49:977–989PubMedCrossRefGoogle Scholar
  47. Newbold C, Craig A, Kyes S, Rowe A, Fernandez-Reyes D, Fagan T (1999) Cytoadherence, pathogenesis and the infected red cell surface in Plasmodium falciparum. Int J Parasitol 29:927–937PubMedCrossRefGoogle Scholar
  48. Perkins SL, Schall JJ (2002) A molecular phylogeny of malarial parasites recovered from cytochrome b gene sequences. J Parasitol 88:972–978PubMedGoogle Scholar
  49. Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818PubMedCrossRefGoogle Scholar
  50. Qari SH, Shi YP, Pieniazek NJ, Collins WE, Lal AA (1996) Phylogenetic relationship among the malaria parasites based on small subunit rRNA gene sequences: monophyletic nature of the human malaria parasite, Plasmodium falciparum. Mol Phylogenet Evol 6:157–165PubMedCrossRefGoogle Scholar
  51. Rathore D, Wahl AM, Sullivan M, McCutchan TF (2001) A phylogenetic comparison of gene trees constructed from plastid, mitochondrial and genomic DNA of Plasmodium species. Mol Biochem Parasitol 114:89–94PubMedCrossRefGoogle Scholar
  52. Rich SM, Ayala FJ (2003) Phylogenetics in malaria research: the case for phylogenetics. Adv Parasitol 54:255–280PubMedCrossRefGoogle Scholar
  53. Ricklefs RE, Fallon SM, Bermingham E (2004) Evolutionary relationships, cospeciation, and host switching in avian malaria parasites. Syst Biol 53:111–119PubMedCrossRefGoogle Scholar
  54. Roehl W (1926) Die Wirkung des Plasmochins auf die Vogelmalaria. Naturwissenschaften 14:1156–1159CrossRefGoogle Scholar
  55. Schall JJ (1996) Malarial parasites of lizards: diversity and ecology. Adv Parasitol 37:255–333PubMedCrossRefGoogle Scholar
  56. Swofford DL (1999) Phylogenetic analysis using parsimony, version 4. Sinauer, Sunderland, MAGoogle Scholar
  57. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCrossRefGoogle Scholar
  58. Tillier ERM, Collins RA (1998) High apparent rate of simultaneous compensatory base pair substitutions in ribosomal RNA. Genetics 148:1993–2002PubMedGoogle Scholar
  59. Vargas-Serrato E, Corredor V, Galinski MR (2003) Phylogenetic analysis of CSP and MSP-9 gene sequences demonstrates the close relationship of Plasmodium coatneyi and Plasmodium knowlesi. Infect Genet Evol 3:67–73PubMedCrossRefGoogle Scholar
  60. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG et al (2001) The sequence of the human genome. Science 292:1305–1351CrossRefGoogle Scholar
  61. Vincke IH, Lips M (1948) Un nouveau Plasmodium d’un rongeur sauvage du Congo, Plasmodium berghei n. sp. Ann Soc Belge Med Trop 28:97–104PubMedGoogle Scholar
  62. Walker HA, Richardson AP (1948) Potentiation of the curative action of 8-aminoquinolines and naphthoquinones in avian malaria. J Natl Mal Soc 7:4–11Google Scholar
  63. Wang L, Kedzierski L, Wesselingh SL, Coppel RL (2003) Oral immunization with a recombinant malaria protein induces conformational antibodies and protects mice against lethal malaria. Infect Immun 71:2356–2364PubMedCrossRefGoogle Scholar
  64. Waters AP, Higgins DG, McCutchan TF (1991) Plasmodium falciparum appears to have arisen as a result of lateral transfer between avian and human hosts. Proc Natl Acad Sci USA 88:3140–3144PubMedCrossRefGoogle Scholar
  65. Waters AP, Higgins DG, McCutchan TF (1993) Evolutionary relatedness of some primate models of Plasmodium. Mol Biol Evol 10:914–923PubMedGoogle Scholar
  66. Wiersch SC, Maier WA, Kampen H (2005) Plasmodium (Haemamoeba) cathemerium gene sequences for phylogenetic analysis of malaria parasites. Parasitol Res 96:90–94PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • S. C. Hagner
    • 1
    Email author
  • B. Misof
    • 2
  • W. A. Maier
    • 1
  • H. Kampen
    • 1
  1. 1.Institute for Medical Microbiology, Immunology and ParasitologyUniversity of BonnBonnGermany
  2. 2.Zoologisches Forschungsinstitut und Museum Alexander KoenigBonnGermany

Personalised recommendations