Advertisement

Parasitology Research

, Volume 101, Issue 2, pp 269–274 | Cite as

Nitric oxide production and nitric oxide synthase immunoreactivity in Naegleria fowleri

  • Saúl Rojas-HernándezEmail author
  • Marco A. Rodríguez-Monroy
  • Leticia Moreno-Fierros
  • Adriana Jarillo-Luna
  • Marisela Carrasco-Yepez
  • Angel Miliar-García
  • Rafael Campos-Rodríguez
Original Paper

Abstract

Free-living ameba Naegleria fowleri produces an acute and fatal infectious disease called primary amebic meningoencephalitis (PAM), whose pathophysiological mechanism is largely unknown. The aim of this study was to investigate the role of nitric oxide (NO) in PAM. Although NO has a cytotoxic effect on various parasites, it is produced by others as part of the pathology, as is the case with Entamoeba histolytica. To test for the production of NO, we analyzed whether antibodies against mammalian NO synthase isoforms (neuronal, inducible, and endothelial) presented immunoreactivity to N. fowleri proteins. We found that the trophozoites produced NO in vitro. The Western blot results, which showed N. fowleri trophozoites, contained proteins that share epitopes with the three described mammalian NOS, but have relative molecular weights different than those described in the literature, suggesting that N. fowleri may contain undescribed NOS isoforms. Moreover, we found that trophozoites reacted to the NOS2 antibody, in amebic cultures as well as in the mouse brain infected with N. fowleri, suggesting that nitric oxide may participate in the pathogenesis of PAM. Further research aimed at determining whether N. fowleri contains active novel NOS isoforms could lead to the design of new therapies against this parasite.

Keywords

Nitric Oxide Epitope Mapping Entamoeba Histolytica Relative Molecular Weight Polyclonal Serum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Albrecht EW, Stegeman CA, Heeringa P, Henning RH, van Goor H (2003) Protective role of endothelial nitric oxide synthase. J Pathol 199:8–17PubMedCrossRefGoogle Scholar
  2. Bascal ZA, Montgomery A, Holden-Dye L, Williams RG, Thorndyke MC, Walker RJ (1996) NADPH diaphorase activity in peptidergic neurones of the parasitic nematode, Ascaris suum. Parasitology 112 (Pt 1):125–134PubMedCrossRefGoogle Scholar
  3. Bateman RM, Sharpe MD, Ellis CG (2003) Bench-to-bedside review: microvascular dysfunction in sepsis-hemodynamics, oxygen transport, and nitric oxide. Crit Care 7:359–373PubMedCrossRefGoogle Scholar
  4. Cox RL, Mariano T, Heck DE, Laskin JD, Stegeman JJ (2001) Nitric oxide synthase sequences in the marine fish Stenotomus chrysops and the sea urchin Arbacia punctulata, and phylogenetic analysis of nitric oxide synthase calmodulin-binding domains. Comp Biochem Physiol B Biochem Mol Biol 130:479–491PubMedCrossRefGoogle Scholar
  5. Dumas M, Bouteille B (1996) Human African trypanosomiasis. C R Seances Soc Biol Fil 190:395–408PubMedGoogle Scholar
  6. Garthwaite J, Charles SL, Chess-Williams R (1988) Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 336:385–388PubMedCrossRefGoogle Scholar
  7. Ghigo D et al (1995) Erythrocyte stages of Plasmodium falciparum exhibit a high nitric oxide synthase (NOS) activity and release an NOS-inducing soluble factor. J Exp Med 182:677–688PubMedCrossRefGoogle Scholar
  8. Gilbert RO, Elia G, Beach DH, Klaessig S, Singh BN (2000) Cytopathogenic effect of Trichomonas vaginalis on human vaginal epithelial cells cultured in vitro. Infect Immun 68:4200–4206PubMedCrossRefGoogle Scholar
  9. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem 126:131–138PubMedCrossRefGoogle Scholar
  10. Gross SS, Wolin MS (1995) Nitric oxide: pathophysiological mechanisms. Annu Rev Physiol 57:737–769PubMedCrossRefGoogle Scholar
  11. Hernandez-Campos ME et al (2003) Nitric oxide synthase in Entamoeba histolytica: its effect on rat aortic rings. Exp Parasitol 104:87–95PubMedCrossRefGoogle Scholar
  12. Hibbs JB Jr, Taintor RR, Vavrin Z, Rachlin EM (1988) Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem Biophys Res Commun 157:87–94PubMedCrossRefGoogle Scholar
  13. Huang S, Kerschbaum HH, Engel E, Hermann A (1997) Biochemical characterization and histochemical localization of nitric oxide synthase in the nervous system of the snail, Helix pomatia. J Neurochem 69:2516–2528PubMedCrossRefGoogle Scholar
  14. Kaiser L, Geary TG, Williams JF (1998) Dirofilaria immitis and Brugia pahangi: filarial parasites make nitric oxide. Exp Parasitol 90:131–134PubMedCrossRefGoogle Scholar
  15. Kroncke KD et al (1993) Pancreatic islet cells are highly susceptible towards the cytotoxic effects of chemically generated nitric oxide. Biochim Biophys Acta 1182:221–229PubMedGoogle Scholar
  16. Kubes P, Suzuki M, Granger DN (1991) Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA 88:4651–4655PubMedCrossRefGoogle Scholar
  17. Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142PubMedGoogle Scholar
  18. Moroz LL, Chen D, Gillette MU, Gillette R (1996) Nitric oxide synthase activity in the molluscan CNS. J Neurochem 66:873–876PubMedCrossRefGoogle Scholar
  19. Mupanomunda M, Williams JF, Mackenzie CD, Kaiser L (1997) Dirofilaria immitis: heartworm infection alters pulmonary artery endothelial cell behavior. J Appl Physiol 82:389–398PubMedGoogle Scholar
  20. Nathan CF, Hibbs JB Jr (1991) Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr Opin Immunol 3:65–70PubMedCrossRefGoogle Scholar
  21. Pacheco-Yepez J, Campos-Rodriguez R, Shibayama M, Ventura-Juarez J, Serrano-Luna J, Tsutsumi V (2001) Entamoeba histolytica: production of nitric oxide and in situ activity of NADPH diaphorase in amebic liver abscess of hamsters. Parasitol Res 87:49–56PubMedCrossRefGoogle Scholar
  22. Palmer RM, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526PubMedCrossRefGoogle Scholar
  23. Pfarr KM, Fuhrman JA (2000) Brugia malayi: localization of nitric oxide synthase in a lymphatic filariid. Exp Parasitol 94:92–98PubMedCrossRefGoogle Scholar
  24. Radomski MW, Palmer RM, Moncada S (1990) An l-arginine/nitric oxide pathway present in human platelets regulates aggregation. Proc Natl Acad Sci USA 87:5193–5197PubMedCrossRefGoogle Scholar
  25. Rojas-Hernandez S, Jarillo-Luna A, Rodriguez-Monroy M, Moreno-Fierros L, Campos-Rodriguez R (2004) Immunohistochemical characterization of the initial stages of Naegleria fowleri meningoencephalitis in mice. Parasitol Res 94:31–36PubMedCrossRefGoogle Scholar
  26. Sanchez-Alvarez M, Leon-Olea M, Talavera E, Pellicer F, Sanchez-Islas E, Martinez-Lorenzana G (1994) Distribution of NADPH-diaphorase in the perioesophageal ganglia of the snail, Helix aspersa. Neurosci Lett 169:51–55PubMedCrossRefGoogle Scholar
  27. Snyder SH, Bredt DS (1991) Nitric oxide as a neuronal messenger. Trends Pharmacol Sci 12:125–128PubMedCrossRefGoogle Scholar
  28. Stuehr DJ, Marletta MA (1985) Mammalian nitrate biosynthesis: mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide. Proc Natl Acad Sci USA 82:7738–7742PubMedCrossRefGoogle Scholar
  29. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354PubMedCrossRefGoogle Scholar
  30. Weiske J, Wiesner A (1999) Stimulation of NO synthase activity in the immune-competent lepidopteran Estigmene acraea hemocyte line. Nitric Oxide 3:123–131PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Saúl Rojas-Hernández
    • 1
    Email author
  • Marco A. Rodríguez-Monroy
    • 2
  • Leticia Moreno-Fierros
    • 2
  • Adriana Jarillo-Luna
    • 1
  • Marisela Carrasco-Yepez
    • 2
  • Angel Miliar-García
    • 1
  • Rafael Campos-Rodríguez
    • 1
  1. 1.Departamento de Investigación y PosgradoEscuela Superior de Medicina, Instituto Politécnico NacionalMéxicoMexico
  2. 2.Inmunidad en Mucosas UBIMEDFES-Iztacala, Universidad Nacional Autónoma de MéxicoTlalnepantlaMexico

Personalised recommendations