Parasitology Research

, Volume 101, Issue 2, pp 373–383 | Cite as

Ultrastructure of the proglottid tegument (neodermis) of the cestode Echinophallus wageneri (Pseudophyllidea: Echinophallidae), a parasite of the bathypelagic fish Centrolophus niger

  • Larisa G. Poddubnaya
  • Tomáš ScholzEmail author
  • Roman Kuchta
  • Céline Levron
  • Magdaléna Bruňanská
Original Paper


Ultrastructural data are provided on the tegument (or neodermis) of proglottids of the cestode Echinophallus wageneri Monticelli, 1890, the first representative of the family Echinophallidae (Pseudophyllidea), parasites of bathypelagic fish, studied using transmission and scanning electron microscopy. The surface of the ventral concave side of proglottids is covered with filiform microtriches about 1.7 μm long. Their glycocalyx, although very thick, is less extensively developed compared to that on digitiform microtriches localized on the dorsal side of the proglottids, which is also covered with filiform microtriches. The digitiform microtriches of the convex dorsal side are about 0.6 μm long, with a very short, rounded spine and the extraordinarily extensive glycocalyx seen as flocculent material. Short digitiform microtriches of E. wageneri seem to differ from microthrix types previously reported in other cestodes by transmission electron microscopy. The posterodorsal margin of all proglottids is typical in possessing a transverse band of large spiniform, tusk-shaped microtriches with a very long spine (approximately 13 μm in length), merged with filiform microtriches. Marked regional differences found in the morphology and distribution of microtriches on the proglottids of E. wageneri may be related to the different functions of the individual parts of the strobila because of the curling of the tapeworm body within the intestine of its fish host.


Ventral Side Syncytial Layer Distal Cytoplasm Tegumental Syncytium Trypanorhynch Cestode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Specimens of E. wageneri were obtained during stays of R.K. at the Institute of Aquaculture, University of Stirling, Scotland, and his field trips on the research vessel “Scotia” of the Fisheries Research Services, Aberdeen, in 2004. These stays were supported by the Access to Research Infrastructure Action of the Improving Human Potential Programme of the European Community (contract HPRI-CT-2001-00180). The authors are also indebted to Dr. Andy P. Shinn, Institute of Aquaculture, University of Stirling, UK, for his support, to the staff of the Laboratory of Electron Microscopy (head J. Nebesářová), Institute of Parasitology, BC AS CR, České Budějovice, and the Centre of Electron Microscopy, Institute of Biology of Inland Waters, Borok, for invaluable technical assistance and providing facilities for TEM observations. The present study was supported by the Grant Agency of the Czech Republic (projects Nos. 206/03/1317, 524/03/H133, 524/04/0342 and 524/07/P039), by Russian Foundation of Fundamental Researches (RFFR, grant no. 05-04-48250), and research projects of the Institute of Parasitology, Academy of Sciences of the Czech Republic (Z60220518 and LC 522), Faculty of Biological Sciences, University of South Bohemia (MSM 6007665801), and Grant Agency of the Slovak Republic VEGA (project no. 2/4177/04).


  1. Andersen K (1975) Comparison of surface topography of three species of Diphyllobothrium (Cestoda, Pseudophyllidea) by scanning electron microscopy. Int J Parasitol 5:293–300PubMedCrossRefGoogle Scholar
  2. Bråten T (1968) An electron microscope study of the tegument and associated structures of the procercoid of Diphyllobothrium latum (L.). Z Parasitenkd 30:95–103PubMedCrossRefGoogle Scholar
  3. Bray RA, Jones A, Andersen KI (1994) Order Pseudophyllidea Carus 1863. In: Khalil LF, Jones A, Bray RA (eds) Keys to the cestode parasites of vertebrates. CAB International, Wallingford, Oxon, pp 205–251Google Scholar
  4. Caira JN, Littlewood DTJ (2001) Worms, Platyhelminthes. In encyclopedia of biodiversity, vol. 5. Academic, San Diego, CA, pp 863–899Google Scholar
  5. Caira JN, Ruhnke TR (1990) A new species of Calliobothrium (Tetraphyllidea: Onchobothriidae) from the whiskery shark, Furgaleus macki, in Australia. J Parasitol 76:319–324PubMedCrossRefGoogle Scholar
  6. Caira JN, Jensen K, Healy CJ (1999) On the phylogenetic relationships among tetraphyllidean, lecanicephalidan and diphyllidean tapeworm genera. Syst Parasitol 42:77–151PubMedCrossRefGoogle Scholar
  7. Charles GH, Orr TSC (1968) Comparative fine structure of outer tegument of Ligula intestinalis and Schistocephalus solidus. Exp Parasitol 22:137–149PubMedCrossRefGoogle Scholar
  8. Coggins JR (1980) Tegument and apical end organ fine structure in the metacestode and adult Proteocephalus ambloplitis. Int J Parasitol 10:409–418CrossRefGoogle Scholar
  9. de Chambrier A, Takemoto RM, Pavanelli GC (2006) Nomimoscolex pertierrae n. sp. (Eucestoda: Proteocephalidea), a parasite of Pseudoplatystoma corruscans (Siluriformes: Pimelodidae) in Brazil and redescription of N. sudobim Woodland, 1935, a parasite of P. fasciatum. Syst Parasitol 64:191–202PubMedCrossRefGoogle Scholar
  10. Díaz-Castañeda V, Carabez-Trejo A, Lamothe-Argumedo R (1995) Ultrastructure of the pseudophyllidean cestode Bothriocephalus acheilognathi, parasite of freshwater fish of commercial importance. Anales Inst Biol Univ Nac Autón México Ser Zool 66:1–16Google Scholar
  11. Gil de Pertierra AA (2005) Comparative study of the metacestodes of adult cestodes (Proteocephalidea: Monticellidae), and some comments on their systematic value. Zool Anz 243:295–304CrossRefGoogle Scholar
  12. Gil de Pertierra AA, Semenas LG (2005) Galaxitaenia toloi n. gen., n. sp. (Eucestoda: Pseudophyllidea) from Galaxias platei (Pisces: Osmeriformes, Galaxiidae), in the Patagonian region of Argentina. J Parasitol 91:900–908PubMedCrossRefGoogle Scholar
  13. Graeber K, Storch V (1979) Elektronenmikroskopische und morphometrische Untersuchungen am Integument von Cestoda and Trematoda (Plathelminthes). Zool Anz 202:331–347Google Scholar
  14. Halton DW (1997) Nutritional adaptations to parasitism within the Platyhelminthes. Int J Parasitol 27:693–704PubMedCrossRefGoogle Scholar
  15. Halton DW (2004) Microscopy and the helminth parasite. Micron 35:361–390PubMedCrossRefGoogle Scholar
  16. Hayunga EG, Mackiewicz JS (1975) An electron microscope study of the tegument of Hunterella nodulosa Mackiewicz and McCrea, 1962 (Cestoidea: Caryophyllidea). Int J Parasitol 5:309–319PubMedCrossRefGoogle Scholar
  17. Hess E, Guggenheim R (1977) A study of the microtriches and sensory processes of the tetrathyridium of Mesocestoides corti Hoeppli, 1925, by transmission and scanning electron microscopy. Z Parasitenkd 53:189–199CrossRefGoogle Scholar
  18. Holy JM, Oaks JA, Mika-Grieve M, Grieve R (1991) Development and dynamics of regional specialization within the syncytial epidermis of the rat tapeworm, Hymenolepis diminuta. Parasitol Res 77:161–172PubMedCrossRefGoogle Scholar
  19. Jones MK (1998) Structure and diversity of cestode epithelia. Int J Parasitol 28:913–923PubMedCrossRefGoogle Scholar
  20. Jones MK (2000) Ultrastructure of the scolex, rhyncheal system and bothridial pits of Otobothrium mugilis (Cestoda: Trypanorhyncha). Folia Parasitol 47:29–38PubMedGoogle Scholar
  21. Kuperman BI (1988) Functional morphology of the lower cestodes: ontogenetic and evolutionary aspects (in Russian). Nauka, LeningradGoogle Scholar
  22. Lee DL (1966) The structure and function of the helminth cuticula. Adv Parasitol 4:187–254PubMedCrossRefGoogle Scholar
  23. Lumsden RD (1975) Surface ultrastructure and cytochemistry of parasitic helminths. Exp Parasitol 37:267–339PubMedCrossRefGoogle Scholar
  24. Marques JF, Santos MJ, Cabral HN, Palm HW (2005) First record of Progrillotia dasyatidis Beveridge Neifar and Euzet, 2004 (Cestoda: Trypanorhyncha) plerocerci from teleost fishes off the Portuguese coast, with a description of the surface morphology. Parasitol Res 96:206–211PubMedCrossRefGoogle Scholar
  25. Oaks JA, Holy JM (1994) Hymenolepis diminuta: two morphologically distinct tegumental secretory mechanisms are present in the cestode. Exp Parasitol 79:292–300PubMedCrossRefGoogle Scholar
  26. Palm HW (2004) The Trypanorhyncha Diesing, 1863. PKSPL-IPB, BogorGoogle Scholar
  27. Palm HW, Mundt U, Overstreet R (2000) Sensory receptors and surface ultrastructure of trypanorhynch cestodes. Parasitol Res 86:821–833PubMedCrossRefGoogle Scholar
  28. Pappas PW (1983) Host-parasite interface. In: Arme C, Pappas PW (eds) Biology of the Eucestoda, vol. 2. Academic Press, New York, pp 297–334Google Scholar
  29. Pappas PW, Uglem GL (1990) Hymenolepis diminuta (Cestoda) liberates an inhibitor of proteolytic enzymes during in vitro incubation. Parasitology 101:455–464PubMedGoogle Scholar
  30. Poddubnaya LG, Bruňanská M, Kuchta R, Scholz T (2006) First evidence of the presence of microtriches in the Gyrocotylidea. J Parasitol 92:703–707PubMedCrossRefGoogle Scholar
  31. Protasova EN (1977) Bothriocephalata - tapeworm helminths of fish (in Russian). Essentials of Cestodology, vol. 8. Nauka, MoscowGoogle Scholar
  32. Rothman AH (1963) Electron microscopic studies of tapeworms: the surface structures of Hymenolepis diminuta (Rudolphi, 1819) Blanchard, 1891. Trans Am Microsc Soc 82:22–30CrossRefGoogle Scholar
  33. Smyth JD, McManus DP (1989) The physiology and biochemistry of cestodes. Cambridge University Press, Cambridge, UKGoogle Scholar
  34. Thomas LP (1983) Fine structure of the tentacles and associated microanatomy of Haplobothrium globuliforme (Cestoda: Pseudophyllidea). J Parasitol 69:719–730CrossRefGoogle Scholar
  35. Thompson RCA, Hayton AR, Jue Sue LP (1980) An ultrastructural study of the microtriches of adult Proteocephaluus tidswelli (Cestoda: Proteocephalidea). Z Parasitenkd 64:95–111PubMedCrossRefGoogle Scholar
  36. Threadgold LT, Hopkins CA (1981) Schistocephalus solidus and Ligula intestinalis: pinocytosis by the tegument. Exp Parasitol 51:444–456PubMedCrossRefGoogle Scholar
  37. Threadgold LT, Robinsson A (1984) Amplification of the cestode surface: a stereological analysis. Parasitology 89:523–535CrossRefGoogle Scholar
  38. Uglem GL, Just JJ (1983) Trypsin inhibition by tapeworms: antienzyme secretion or pH adjusment? Science 220:79–81PubMedCrossRefGoogle Scholar
  39. Xylander WER (2001) The Gyrocotylidea, Amphilinidea and the early evolution of Cestoda. In: Littlewood DTJ, Bray RA (eds) Interrelationships of the Platyhelminthes. Taylor & Francis, London, pp 103–111Google Scholar
  40. Yamane Y (1968) On the fine structure of Diphyllobothrum erinacei with special reference to the tegument. Yonago Acta Med 12:169–181PubMedGoogle Scholar
  41. Yamane Y, Bylund G, Abe K, Osaki Y, Okamoto T (1989) Scanning electron microscopic study of four Diphyllobothrium species. Parasitol Res 75:238–244PubMedCrossRefGoogle Scholar
  42. Yamane Y, Nagasawa A, Makino Y, Yazaki S, Fukumoto S (1982) Ultrastructure of the tegument of Diphyllobothrium latum by scanning electron microscopy. Jap J Parasitol 31:33–46Google Scholar
  43. Žd’árská Z, Nebesářová J (2005) Transmission electron microscopy of the scolex and neck microtriches of Silurotaenia siluri (Batsch, 1786) (Cestoda: Proteocephalidea). Parasitol Res 97:98–102CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Larisa G. Poddubnaya
    • 1
  • Tomáš Scholz
    • 2
    • 3
    Email author
  • Roman Kuchta
    • 2
    • 3
  • Céline Levron
    • 2
  • Magdaléna Bruňanská
    • 2
    • 4
  1. 1.Institute of Biology of Inland WatersRussian Academy of SciencesBorokRussia
  2. 2.Institute of ParasitologyBiology Centre of the Academy of Sciences of the Czech RepublicČeské BudějoviceCzech Republic
  3. 3.Faculty of Biological SciencesUniversity of South BohemiaČeské BudějoviceCzech Republic
  4. 4.Parasitological InstituteSlovak Academy of SciencesKošiceSlovak Republic

Personalised recommendations