Parasitology Research

, Volume 100, Issue 1, pp 175–181 | Cite as

Responsiveness of parasite Cys His proteases to iron redox

Short Communication


Plasmodium falciparum growth can be opposed in erythrocyte culture or in vivo by nonselective inhibitors of CysHis proteases or pro-oxidative drugs, which elevate erythrocyte Fe3+. However, no relationship between Fe redox and CysHis protease inhibition has been suggested. Here, mature falcipain-2 was found to be inhibited by relevant concentrations of Fe3+ but not Fe2+ in the presence of excess GSH or DTT. Initial inhibition of falcipain-2 by Fe3+ (1–50 μM) was reversed in temporal correlation with the 12–14 min half-time of Fe3+ reduction to Fe2+ caused by GSH or DTT (6 mM). The metal–redox responses of cathepsin B from mammal, cruzain from Trypanosoma cruzi, and falcipain-2 from P. falciparum were similar. Fe3+/Fe2+ speciation has features consistent with a natural redox switch modifying the reaction rate of mature CysHis proteases in virtually all cell types. Pro-oxidative antimalarial therapy might intervene in a natural mechanism normally modifying CysHis protease reaction rates via redox state of Fe pools.


  1. Alayash AI, Patel RP, Cashon RE (2001) Redox reactions of hemoglobin and myoglobin: biological and toxicological implications. Antioxid Redox Signal 3:313–327PubMedCrossRefGoogle Scholar
  2. Andrade LO, Andrews NW (2005) The Trypanosoma cruzi–host–cell interplay: location, invasion, retention. Nat Rev Microbiol 10:819–823CrossRefGoogle Scholar
  3. Baird JK (2005) Effectiveness of antimalarial drugs. N Engl J Med 352:1565–1577PubMedCrossRefGoogle Scholar
  4. Baird JK, Fryauff DJ, Hoffman SL (2003) Primaquine for prevention of malaria in travelers. Clin Infect Dis 15:1659–1667CrossRefGoogle Scholar
  5. Barr SC, Warner KL, Kornreic BG, Piscitelli J, Wolfe A, Benet L, McKerrow JH (2005) A cysteine protease inhibitor protects dogs from cardiac damage during infection by Trypanosoma cruzi. Antimicrob Agents Chemother 49:5160–5161PubMedCrossRefGoogle Scholar
  6. Becker K, Rahlfs S, Nickel C, Schirmer RH (2003) Glutathione—functions and metabolism in the malarial parasite Plasmodium falciparum. Biol Chem 384:551–566PubMedCrossRefGoogle Scholar
  7. Bharatam PV, Patel DS, Iqbal P (2005) Pharmacophoric features of biguanide derivatives: an electronic and structural analysis. J Med Chem 48:7615–7622PubMedCrossRefGoogle Scholar
  8. Bozdech Z, Ginsburg H (2004) Antioxidant defense in Plasmodium falciparum—data mining of the transcriptome. Malar J 39:23–33CrossRefGoogle Scholar
  9. Comporti M, Signorini C, Buonocore G, Ciccoli L (2002) Iron release, oxidative stress and erythrocyte ageing. Free Radic Biol Med 32:568–576PubMedCrossRefGoogle Scholar
  10. Crabb JW, O’Neil J, Miyagi M, West K, Hoff HF (2002) Hydroxynonenal inactivates cathepsin B by forming Michael adducts with active site residues. Protein Sci 11:831–840PubMedCrossRefGoogle Scholar
  11. Dahl EL, Rosenthal PJ (2005) Biosynthesis, localization, and processing of falcipain cysteine proteases of Plasmodium falciparum. Mol Biochem Parasitol 139:205–212PubMedCrossRefGoogle Scholar
  12. Dasaradhi PV, Mohmmed M, Kumar A, Hossain MJ, Bhatnagar CK, Chauhan VS, Malhotra P (2005) A role of falcipain-2, principal cysteine proteases of Plasmodium falciparum in merozoite egression. Biochem Biophys Res Commun 336:1062–1068PubMedCrossRefGoogle Scholar
  13. Diaz EG, Montalto de Mecca M, Castro JA (2004) Reactions of nifurtimox with critical sulfhydryl-containing biomolecules: their potential toxicological relevance. J Appl Toxicol 24:189–195PubMedCrossRefGoogle Scholar
  14. Egan TJ, Combrinck JM, Egan J, Hearne GR, Marques HM, Ntenteni S, Sewell BT, Smith PJ, Taylor D, van Schalkwyk DA, Walden JC (2002) Fate of haem iron in the malaria parasite Plasmodium falciparum. Biochem J 365:343–347PubMedCrossRefGoogle Scholar
  15. Goldberg DE (2005) Hemoglobin degradation. Curr Top Microbiol Immunol 295:275–921PubMedCrossRefGoogle Scholar
  16. Jones K, Ward SA (2002) Biguanide–atovaquone synergy against Plasmodium falciparum in vitro. Antimicrob Agents Chemother 46:2700–2703PubMedCrossRefGoogle Scholar
  17. Krauth-Siegel RL, Bauer H, Schirmer RH (2005) Dithiol proteins as guardians of the intracellular redox milieu in parasites: old and new drug targets in trypanosomes and malaria-causing plasmodia. Angew Chem Int Ed Engl 44:671–690CrossRefGoogle Scholar
  18. Kwiatkowski DP (2005) How malaria has affected the human genome and what human genetics can teach us about malaria. Am J Hum Genet 77:171–192PubMedCrossRefGoogle Scholar
  19. LeBel O, Maris T, Duval H, Wuest JD (2005) A practical guide to arylbiguanides—synthesis and structural characterization. Can J Chem 83:615–625CrossRefGoogle Scholar
  20. Lockwood TD (2004) Cys–His proteases are among the wired proteins of the cell. Arch Biochem Biophys 432:12–24PubMedGoogle Scholar
  21. McGrath ME, Eakin AE, Engel JC, McKerrow JH, Craik CS, Fletterick RJ (1995) The crystal structure of cruzain: a therapeutic target for Chagas’ disease. J Mol Biol 247:251–259PubMedCrossRefGoogle Scholar
  22. Maya JD, Bollo S, Nunez-Vergara LJ, Squella JA, Repetto Y, Morello A, Perie J, Chauviere G (2003) Trypanosoma cruzi: effect and mode of action of nitroimidazole and nitrofuran derivatives. Biochem Pharmacol 65:999–1006PubMedCrossRefGoogle Scholar
  23. Muller S, Liebau E, Walter RD, Krauth-Siegel RL (2003) Thiol-based redox metabolism of protozoan parasites. Trends Parasitol 19:320–328PubMedCrossRefGoogle Scholar
  24. Pandey KC, Wang SX, Sijwali PS, Lau AL, McKerrow JH, Rosenthal PJ (2005) The Plasmodium falciparum cysteine protease falcipain-2 captures its substrate, hemoglobin, via a unique motif. Proc Natl Acad Sci USA 102:9138–9143PubMedCrossRefGoogle Scholar
  25. Rahlfs S, Nickel C, Deponte M, Schirmer RH, Becker K (2003) Plasmodium falciparum thioredoxins and glutaredoxins as central players in redox metabolism. Redox Rep 8:246–250PubMedCrossRefGoogle Scholar
  26. Rifkind JM, Nagababu E, Ramasamy S, Ravi LB (2003) Hemoglobin redox reactions and oxidative stress. Redox Rep 8:234–237PubMedCrossRefGoogle Scholar
  27. Rosenthal PJ (2004) Cysteine proteases of malaria parasites. Int J Parasitol 34:1489–1499PubMedCrossRefGoogle Scholar
  28. Schoneich C (2000) Mechanisms of metal-catalyzed oxidation of histidine to 2-oxo-histidine in peptides and proteins. J Pharm Biomed Anal 21:1093–1097PubMedCrossRefGoogle Scholar
  29. Schroder I, Johnson E, de Vries S (2003) Microbial ferric iron reductases. FEMS Microbiol Rev 27:427–447PubMedCrossRefGoogle Scholar
  30. Shenai BR, Sijwali PS, Singh A, Rosenthal PJ (2000) Characterization of native and recombinant falcipain-2, a principal trophozoite cysteine protease and essential hemoglobinase of Plasmodium falciparum. J Biol Chem 275:29000–29010PubMedCrossRefGoogle Scholar
  31. Sijwali PS, Rosenthal PJ (2004) Gene disruption confirms a critical role for the cysteine protease falcipain-2 in hemoglobin hydrolysis by Plasmodium falciparum. Proc Natl Acad Sci USA 101:4384–4389PubMedCrossRefGoogle Scholar
  32. Sweeney D, Raymer ML, Lockwood TD (2003) Antidiabetic and antimalarial biguanide drugs are metal-interactive antiproteolytic agents. Biochem Pharmacol 66:663–677PubMedCrossRefGoogle Scholar
  33. Trager W, Jensen JB (1976) Human malaria parasites in continuous culture. Science 193:673–675PubMedCrossRefGoogle Scholar
  34. Urbina JA (2002) Chemotherapy of Chagas disease. Curr Pharm Des 8:287–295PubMedCrossRefGoogle Scholar
  35. Wu Y, Wang X, Liu X, Wang Y (2003) Data-mining approaches reveal hidden families of proteases in the genome of malaria parasite. Genome Res 13:601–616PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of Pharmacology and Toxicology, School of MedicineWright State UniversityKetteringUSA

Personalised recommendations