Skip to main content
Log in

Multi-membrane-bound structures of Apicomplexa: I. the architecture of the Toxoplasma gondii apicoplast

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Apicomplexan parasites carry a plastid-like organelle termed apicoplast. The previous documentation of four membranes bordering the Toxoplasma gondii apicoplast suggested a secondary endosymbiotic ancestry of this organelle. However, a four-membraned apicoplast wall could not be confirmed for all Apicomplexa including the malarial agents. The latter reportedly possesses a mostly tri-laminar plastid wall but also displays two multi-laminar wall partitions. Since these sectors apparently evolved from regional wall membrane infoldings, the malarial plastid could have lost one secondary wall membrane in the course of evolution. Such wall construction was however not unambiguously resolved. To examine whether the wall of the T. gondii apicoplast is comparably complex, serial ultra-thin sections of tachyzoites were analyzed. This investigation revealed a single pocket-like invagination within a four-laminar wall segment but also disclosed that four individual membranes do not surround the entire T. gondii apicoplast. Instead, this organelle possesses an extensive sector that is bordered by two membranes. Such heterogeneous wall construction could be explained if the inner two membranes of a formerly four-membraned endosymbiont are partially lost. However, our findings are more consistent with an essentially dual-membraned organelle that creates four-laminar wall sectors by expansive infoldings of its interior border. Given this architecture, the T. gondii apicoplast depicts a residual primary plastid not a secondary one as presently proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aikawa M (1966) The fine structure of the erythrocytic stage of three avian malarial parasites, Plasmodium fallax,P. lophyrae, and P. cathemerium. Am J Trop Med Hyg 15:449–471

    CAS  PubMed  Google Scholar 

  • Aldritt SM, Joseph JT, Wirth DF (1989) Sequence identification of cytochrome b in Plasmodium gallinaceum. Mol Cell Biol 9:3614–3620

    CAS  PubMed  Google Scholar 

  • Borst P, Overdulve JP, Weijers PJ, Fase-Fowler P, van den Berg M (1984) DNA circles with cruciforms from Isospora (Toxoplasma) gondii. Biochim Biophys Acta 781:100–111

    CAS  PubMed  Google Scholar 

  • Brink S, Flügge U-I, Chaumont F, Boutry M, Emmermann M, Schmitz U, Becker K, Pfanner N (1994) Preproteins of chloroplast envelope inner membrane contain targeting information for receptor-dependent import into fungal mitochondria. J Biol Chem 269:16478–16485

    CAS  PubMed  Google Scholar 

  • Bruce BD (2000) Chloroplast transit peptides: structure, function and evolution. Trends Cell Biol 10:440–447

    CAS  PubMed  Google Scholar 

  • Cavalier-Smith T (2003) Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae). Phil Trans R Soc Lond B 358:109–134

    Article  CAS  Google Scholar 

  • Delwiche CF, Palmer JD (1997) The origin of plastids and their spread via secondary endosymbiosis. In: Bhattachary D (ed) Origins of algae and their plastids. Springer, Wien New York, pp 53–86

    Google Scholar 

  • DeRocher A, Hagen CB, Froehlich JE, Feagin JE, Parsons M (2000) Analysis of targeting sequences demonstrates that trafficking to the Toxoplasma gondii plastid branches off the secretory system. J Cell Sci 113:3969–3977

    CAS  PubMed  Google Scholar 

  • DeRocher A, Gilbert B, Feagin JE, Parsons M (2005) Dissection of brefeldin a-sensitive and -insensitive steps in apicoplast protein targeting. J Cell Sci 118:565–574

    Article  CAS  PubMed  Google Scholar 

  • Dore E, Frontali C, Forte T, Fratarcangeli S (1983) Further studies and electron microscopic characterisation of Plasmodium berghei DNA. Mol Biochem Parasitol 8:339–352

    Article  CAS  PubMed  Google Scholar 

  • Douglas SE, Murphy CA, Spencer DF, Gray MW (1991) Cryptomonad algae are evolutionary chimeras of two phylogenetically distinct unicellular eukaryotes. Nature 350:148–151

    Article  CAS  PubMed  Google Scholar 

  • Ellis KES, Clough B, Saldanha JW, Wilson RJM (2001) Nifs and Sufs in malaria. Mol Microbiol 41:973–981

    Article  CAS  PubMed  Google Scholar 

  • Eschbach S, Hofmann CJB, Maier G-U, Sitte P, Hansmann P (1991) A eukaryotic genome of 600 kb: electrophoretic karyotype of nucleomorph and cell nucleus of the cryptomonad alga, Pyrenomonas salina. Nucleic Acids Res 19:1779–1781

    CAS  PubMed  Google Scholar 

  • Fast NM, Kissinger JC, Roos DS, Keeling PJ (2001) Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan parasites and dinoflagellate plastids. Mol Biol Evol 18:418–426

    CAS  PubMed  Google Scholar 

  • Feagin JE, Werner E, Gardner MJ, Williamson DH, Wilson RJM (1992) Homologies between the contiguous and fragmented rRNAs of the two Plasmodium falciparum extrachromosomal DNAs are limited to core sequences. Nucleic Acids Res 20:879–887

    CAS  PubMed  Google Scholar 

  • Foth BJ, Stuart AR, Tonkin CJ, Struck NS, Fraunholz M, Roos DS, Cowman AF, McFadden GI (2003) Dissecting apicoplast targeting in the malaria parasite Plasmodium falciparum. Science 299:705–708

    Article  CAS  PubMed  Google Scholar 

  • Funes S, Davidson E, Reyes-Priesto A, Magallon S, Herion P, King MP, Gonzales-Halphen D (2002) A green algal apicoplast ancestor. Science 298:2155

    Article  CAS  PubMed  Google Scholar 

  • Funes S, Davidson E, Reyes-Priesto A, Magallon S, Herion P, King MP, Gonzales-Halphen D (2003) Response to comment on “A green algal apicoplast ancestor”. Science 301:49b

    Article  Google Scholar 

  • Gardner MJ, Bates PA, Ling IT, Moore DJ, McCready S, Gunasekera MBR, Wilson RJM, Williamson DH (1988) Mitochondrial DNA of the human malarial parasite Plasmodium falciparum. Mol Biochem Parasitol 31:11–18

    Article  CAS  PubMed  Google Scholar 

  • Gardner MJ, Feagin JE, Moore DJ, Spencer DF, Gray MW, Williamson DH, Wilson RJM (1991a) Organisation and expression of small subunit ribosomal RNA genes encoded by a 35-kilobase circular DNA in Plasmodium falciparum. Mol Biochem Parasitol 48:77–88

    Article  CAS  PubMed  Google Scholar 

  • Gardner MJ, Williamson DH, Wilson RJM (1991b) A circular DNA in malarial parasites encodes an RNA polymerase like that of procaryotes and chloroplasts. Mol Biochem Parasitol 44:115–123

    Article  CAS  PubMed  Google Scholar 

  • Gardner MJ, Feagin JE, Moore DJ, Rangachari K, Williamson DH, Wilson RJM (1993) Sequence and organization of large subunit rRNA genes from the extrachromosomal 35-kb circular DNA of the malarial parasite Plasmodium falciparum. Nucleic Acids Res 21:1067–1071

    CAS  PubMed  Google Scholar 

  • Gardner MJ, Goldman N, Barnett P, Moore PW, Rangachari K, Strath M, Whyte A, Williamson DH, Wilson RJM (1994) Phylogenetic analysis of the rpoB gene from the plastid-like DNA of Plasmodium falciparum. Mol Biochem Parsitol 66:221–231

    Article  CAS  Google Scholar 

  • Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton RW, Carlton JM, Pain A, Nelso KE, Bowman S, Paulson IT, James K, Eisen JA, Rutherford K, Salzberg SL, Craig A, Kyes S, Chan M-S, Nene V, Shallom SJ, Suh B, Peterson J, Angluoli S, Pertea M, Allen J, Selengut J, Haft D, Mather MW, Vaidya AB, Martin DMA, Fairlamb AH, Fraunholz MJ, Roos DS, Ralph SA, McFadden GI, Cummings LM, Subramanian GM, Mungall C, Venter JC, Carucci DJ, Hoffman SL, Newbold C, Davis RW, Fraser CM, Barrell B (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498–511

    Article  CAS  PubMed  Google Scholar 

  • Hopkins J, Fowler R, Krishna S, Wilson I, Mitchell G, Bannister L (1999) The plastid in Plasmodium falciparum asexual blood stages: a three-dimensional ultrastructural analysis. Protist 150:283–295

    CAS  PubMed  Google Scholar 

  • Howe CJ (1992) Plastid origin of an extrachromosomal DNA molecule from Plasmodium, the causative agent of malaria. J Theor Biol 158:199–205

    CAS  PubMed  Google Scholar 

  • Huang J, Hack E, Thornburg RW, Myers AM (1990) A yeast mitochondrial leader peptide functions in vivo as a dual targeting signal for both chloroplasts and mitochondria. Plant Cell 2:1249–1260

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Mullapudi N, Lancto CA, Scott M, Abrahamsen MS, Kissinger JC (2004) Phylogenetic evidence supports past endosymbiosis, intracellular and horizontal gene transfer in Cryptosporidium parvum. Genome Biol 5:R88

    Article  PubMed  Google Scholar 

  • Hurt EC, Soltanifar N, Goldschmidt-Clermont M, Rochaix J-D, Schatz G (1986) The cleavable pre-sequence of an imported chloroplast-protein directs attached polypeptides into yeast mitochondria. EMBO J 5:1343–1350

    CAS  Google Scholar 

  • Jelenska J, Crawford MJ, Harb OS, Zuther E, Haselkorn R, Roos DS, Gornicki P (2001) Subcellular localization of acetyl-CoA carboxylase in the apicomplexan parasite Toxoplasma gondii. Proc Natl Acad Sci USA 98:2723–2728

    Article  CAS  PubMed  Google Scholar 

  • Joiner KA, Roos DS (2002) Secretory traffic in the eukaryotic parasite Toxoplasma gondii: less is more. J Cell Biol 157:557–563

    Article  CAS  PubMed  Google Scholar 

  • Jomaa H, Wiesner J, Sanderbrand S, Altincicek B, Weidemeyer C, Hintz M, Türbachova I, Eberl M, Zeidler J, Lichtenthaler HK, Soldati D, Beck E (1999) Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. Science 285:1573–1576

    Article  CAS  PubMed  Google Scholar 

  • Joyard J, Teyssier E, Miege C, Berny-Seigneurin D, Marechal E, Block MA, Dorne A-J, Rolland N, Ajlani G, and Douce R (1998) Update on chloroplasts: the biochemical machinery of plastid envelope membranes. Plant Physiol 118:715–723

    Article  CAS  PubMed  Google Scholar 

  • Kilejian A (1975) Circular mitochondrial DNA from the avian malarial parasite Plasmodium lophurae. Biochim Biophys Acta 390:276–284

    CAS  PubMed  Google Scholar 

  • Köhler S, Delwiche C, Denny PW, Tilney LG, Webster P, Wilson RJM, Palmer JD, Roos DS (1997) A plastid of probable green algal origin in Apikomplexan parasites. Science 275:1485–1489

    Article  PubMed  Google Scholar 

  • Lang-Unnasch N, Reith ME, Munholland J, Barta JR (1998) Plastids are widespread and ancient in parasites of the phylum apicomplexa. Int J Parasitol 28:1743–1754

    Article  CAS  PubMed  Google Scholar 

  • McFadden GI, Gilson PR, Hofmann CJB, Adcock GJ, Maier U-G (1994) Evidence that an amoeba acquired a chloroplast by retaining part of an engulfed eukaryotic alga. Proc Natl Acad Sci USA 91:3690–3694

    CAS  PubMed  Google Scholar 

  • McFadden GI, Reith ME, Munholland J, Lang-Unnasch N (1996) Plastid in human parasite. Nature 381:482

    Article  CAS  PubMed  Google Scholar 

  • McFadden GI, Waller RF, Reith ME, Lang-Unnasch N (1997) Plastids in apicomplexan parasites In: Bhattachary D (ed) Origins of algae and their plastids. Springer, Wien New York, pp 261–287

    Google Scholar 

  • Mehlhorn H, Schein E (1984) The Piroplasms: life cycle and sexual stages. Adv Parasitol 23:37–103

    CAS  PubMed  Google Scholar 

  • Palmer JD (2003) The symbiotic birth and spread of plastids: how many times and whodunit? J Phycol 39:4–11

    Article  CAS  Google Scholar 

  • Peeters N, Small I (2001) Dual targeting to mitochondria and chloroplasts. Biochim Biophys Acta 1541:54–63

    Article  CAS  PubMed  Google Scholar 

  • Perozzo R, Kuo M, bir Singh Sidhu A, Valiyaveettil JT, Bittman R, Jacobs Jr WR, Fidock DA, Succhettini JC (2002) Structural Elucidation of the specificity of the antibacterial agent triclosan for malarial enoyl acyl carrier protein reductase. J Biol Biochem 277:13106–13114

    Article  CAS  Google Scholar 

  • Pfeffer S (2003) Membrane domains in the secretory and endocytotic pathways. Cell 112:507–517

    Article  CAS  PubMed  Google Scholar 

  • Porchet-Henneré E (1972) Observations en microscopie photonique et électronique sur la sporogenèse de Dehornia (1) sthenelais (n. gen., sp.n.), sporozoaire parasite de l’annelide polychète Sthenelais boa (Aphroditides). Protistologica 8:245–255

    Google Scholar 

  • Roos DS, Crawford MJ, Donald RGK, Kissinger JC, Klimczak LJ, Striepen B (1999) Current Opin Microbiol 2:426–432

    Article  CAS  Google Scholar 

  • Rudzinska MA, Vickermann K (1968) The fine structure. In: Weinman D, Ristic M (eds) Infectious blood diseases of man and animals: diseases caused by Protista. I. Academic, New York, pp 217–306

    Google Scholar 

  • Scholtyseck E, Mehlhorn H (1970) Ultrastructural study of characteristic organelles (paired organelles, micronemes, micropores) of sporozoa and related organisms. Z Parasitenk 34:68–94

    Article  Google Scholar 

  • Scholtyseck E, Piekarski GP (1965) Elektronenmikroskopische Untersuchungen an Merozoiten von Eimerien (Eimeria performans and E. stiedae) und Toxoplasma gondii zur systematischen Stellung von T. gondii. Z Parasitenk 26:91–115

    Article  CAS  PubMed  Google Scholar 

  • Siddall ME (1992) Hohlzylinder. Parasitol Today 8:90–91

    Article  CAS  Google Scholar 

  • Sulli C, Fang Z-W, Muchhal U, Schwartzbach SD (1999) Topology of Euglena chloroplast protein precursors within endoplasmic reticulum to Golgi to chloroplast transport-vesicles. J Biol Chem 274:457–463

    CAS  PubMed  Google Scholar 

  • Vaidya AB, Akella R, Suplick K (1989) Sequences similar to genes of two mitochondrial proteins and portions of ribosomal RNA in tandemly arrayed 6-kilobase-pair DNA of a malarial parasite. Mol Biochem Parasitol 35:97–108. Corrigendum (1990) Mol Biochem Parasitol 39:295–296

    Article  Google Scholar 

  • Van Dooren GG, Schwartzbach SD, Osafune T, McFadden GI (2001) Translocation of proteins across the multiple membranes of complex plastids. Biochem Biophys Acta 1541:34–53

    Article  CAS  PubMed  Google Scholar 

  • Van Dooren GG, Su V, D’Ombrain MC, McFadden GI (2002) Processing of an apicoplast leader sequence in Plasmodium falciparum and the identification of a putative leader cleavage enzyme. J Biol Chem 277:23612–23619

    Article  CAS  PubMed  Google Scholar 

  • Van de Peer Y, Rensing SA, Maier UG, De Wachter R (1996) Substitution rate calibration of small subunit of ribosomal RNA identifies chlorarachniophyte endosymbionts as remnants of green algae. Proc Natl Acad Sci USA 93:7732–7736

    Article  CAS  PubMed  Google Scholar 

  • Vivier E, Petitprez A, Landau I (1972) Observations ultrastructurales sur la sporoblastogenèse de l’hémogregarine, Hepatozoon domerguei, Coccide Adeleidea. Protistologica 8:315–334

    Google Scholar 

  • Waller RF, Keeling PJ, Donald RGK, Striepen B, Handman E, Lang-Unnasch N, Cowman AF, Besra GS, Roos DS, McFadden GI (1998) Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proc Natl Acad Sci USA 95:12352–12357

    CAS  PubMed  Google Scholar 

  • Waller RF, Reed MB, Cowman AF, McFadden GI (2000) Protein trafficking to the plastid of Plasmodium falciparum is via the secretory pathway. EMBO J 19:1794–1802

    CAS  PubMed  Google Scholar 

  • Waller RF, Keeling PJ, van Dooren GG, McFadden GI (2003). Comment on “A green algal apicoplast ancestor”. Science 301:49a

    Article  Google Scholar 

  • Williamson DH, Wilson RJM, Bates PA, McCready S, Perler F, Quiang B (1985) Nuclear and mitochondrial DNA of the primate malarial parasite Plasmodium knowlesi. Mol Biochem Parasitol 14:199–209

    Article  CAS  PubMed  Google Scholar 

  • Williamson DH, Gardner MJ, Preiser P, Moore DJ, Rangachari K, Wilson RJM (1994) The evolutionary origin of the 35 kb circular DNA of Plasmodium falciparum: New evidence supports a possible rhodophyte ancestry. Mol Gen Genet 243:249–252

    CAS  PubMed  Google Scholar 

  • Wilson RJM I (2002) Progress with parasite plastids. J Mol Biol 319:257–274

    Article  PubMed  Google Scholar 

  • Wilson RJM I, Denny PW, Preiser PR, Rangachari K, Roberts K, Roy A, Whyte A, Strath M, Moore DJ, Moore PW, Williamson DH (1996) Complete gene map of the plastid-like DNA of the malaria parasite Plasmodium falciparum. J Mol Biol 261:155–172

    Article  PubMed  Google Scholar 

  • Wilson RJM I, Rangachari K, Saldanha JW, Rickman L, Buxton RS, Eccleston JF (2003) Parasite plastids: maintenance and functions. Phil Trans R Soc Lond B 358:155–164

    Article  CAS  Google Scholar 

  • Wilson RJM, Williamson DH (1997) Extrachromosomal DNA in the Apicomplexa. Mirob Mol Biol Rev 61:1–16

    CAS  Google Scholar 

  • Yung S, Unnasch TR, Lang-Unnasch N (2001) Analysis of apicoplast targeting and transit peptide processing in Toxoplasma gondii by deletional and insertional mutagenesis. Mol Biochem Parasitol 118:11–21

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks John Boothroyd, Iain Wilson and Heinz Mehlhorn for critical reading of the manuscript and David Ferguson, Günter Schmahl and IngeLatka for technical support and assistance. This project was supported by the Heinrich Heine University of Düsseldorf and through a grant of the Deutsche Forschungsgemeinschaft (Ko1871/1–1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Köhler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Köhler, S. Multi-membrane-bound structures of Apicomplexa: I. the architecture of the Toxoplasma gondii apicoplast. Parasitol Res 96, 258–272 (2005). https://doi.org/10.1007/s00436-005-1338-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-005-1338-2

Keywords

Navigation