Skip to main content
Log in

Ultrastructure of adhesive device in fly in families calliphoridae, muscidae and sarcophagidae, and their implication as mechanical carriers of pathogens

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The ultrastructure of adhesive device or the pulvilli, pad-like structure between the tarsal claws of the legs, is presented in the blowfly (Calliphoridae), housefly and relatives (Muscidae), and flesh fly (Sarcophagidae) through scanning electron microscopy. The blowfly species were Chrysomya chani, Chrysomya nigripes, Chrysomya pinguis, and Chrysomya villeneuvi; while those of the housefly and relatives were Musca domestica and Hydrotaea chalcogaster, respectively. Fresh fly species included Boettcherisca peregrina and Liosarcophaga dux. Numerous tenent setae were observed on the ventral side of the pulvilli. Two features of the tip of the tenent setae were found as a spatula-like (in C. chani, C. pinguis, C. nigripes, M. domestica, H. chalcogaster, B. peregrina, and L. dux) and spoon-like tip (in C. villeneuvi). Transmission electron microscopy of the tenent setae in M. domestica revealed the electron-lucent centrally located, suggesting an adhesive substance. These results provided anatomical information that allow us to not only understand the successful attachment of flies to smooth surfaces but also clarify their role as a mechanical carrier of microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Betz O (1996) Function and evolution of the adhesion-capture apparatus of Stenus species (Coleoptera, Staphylinidae). Zoomorphology 116:15–34

    Article  Google Scholar 

  • Betz O (2003) Structure of the tarsi in some Stenus species (Coleoptera, Staphylinidae): external morphology, ultrastructure, and tarsal secretion. J Morphol 255:24–43

    Article  PubMed  Google Scholar 

  • Betz O, Mumm R (2001) The predatory legs of Philonthus marginatus (Coleoptera, Staphylinidae): functional morphology and tarsal ultrastructure. Arthropod Struct Dev 30:77–97

    Article  PubMed  CAS  Google Scholar 

  • Betz O, Kölsch G (2004) The role of adhesion in prey capture and predator defence in arthropods. Arthropod Struct Dev 33:3–30

    Article  PubMed  Google Scholar 

  • Federle W, Endlein T (2004) Locomotion and adhesion: dynamic control of adhesive surface contact in ants. Arthropod Struct Dev 33:67–75

    Article  PubMed  Google Scholar 

  • Federle W, Brainerd EL, McMahon TA, Hölldobler B (2001) Biomechanics of the movable pretarsal adhesive organ in ants and bees. Proc Natl Acad Sci U S A 98:6215–6220

    Article  PubMed  CAS  Google Scholar 

  • Gaume L, Perret P, Gorb E, Gorb S, Labat JJ, Rowe N (2004) How do plant waxes cause flies to slide? Experimental tests of wax-based trapping mechanisms in three pitfall carnivorous plants. Arthropod Struct Dev 33:103–111

    Article  PubMed  CAS  Google Scholar 

  • Gorb SN (1998) The design of the fly adhesive pad: distal tenent setae are adapted to the delivery of an adhesive secretion. Proc R Soc Lond B 265:747–752

    Article  Google Scholar 

  • Gorb SN (2004) Walking on the ceiling: structures, functional principles, and ecological implications. Arthropod Struct Dev 33:1–2

    Article  PubMed  Google Scholar 

  • Gorb SN, Gorb EV (2004) Ontogenesis of the attachment ability in the bug Coreus marginatus (Heteroptera, Insecta). J Exp Biol 207:2917–2924

    Article  PubMed  Google Scholar 

  • Greenberg B (1971) Flies and disease. Vol. 1. Ecology, classification and biotic associations. Princeton University Press, NJ

    Google Scholar 

  • Kobayashi M, Sasaki T, Saito N, Tamura K, Suzuki K, Watanabe H, Agui N (1999) Houseflies: not simple mechanical vectors of enterohemorrhagic Escherichia coli 0157:H7. Am J Trop Med Hyg 61:625–629

    PubMed  CAS  Google Scholar 

  • Levine OS, Levine MM (1991) Houseflies (Musca domestica) as mechanical vectors of shigellosis. Ref Infect Dis 13:688–696

    PubMed  CAS  Google Scholar 

  • McAlpine DK (1991) Review of the Australian kelp flies (Diptera: Coeloptidae). Syst Entomol 16:29–84

    Article  Google Scholar 

  • Niederegger S, Gorb S (2003) Tarsal movements in flies during leg attachment and detachment on a smooth substrate. J Insect Physiol 49:611–620

    Article  PubMed  CAS  Google Scholar 

  • Niederegger S, Gorb S, Jiao Y (2002) Contact behaviour of tenent setae in attachment pads of the blowfly Calliphora vicina (Diptera, Calliphoridae). J Comp Physiol A 187:961–970

    Article  Google Scholar 

  • Pohl H, Beutel RG (2004) Fine structure of adhesive devices of Strepsiptera (Insecta). Arthropod Struct Dev 33:31–43

    Article  PubMed  Google Scholar 

  • Sukontason K, Bunchoo M, Khantawa B, Sukontason K, Piangjai S, Choochote W (2000) Musca domestica as a mechanical carrier of bacteria in Chiang Mai, North Thailand. J Vector Ecol 25:114–117

    PubMed  CAS  Google Scholar 

  • Sukontason K, Sukontason KL, Piangjai S, Choochote W, Vogtsberger RC (2005) Ultrastructure of the ommatrichia in Megaselia scalaris (Loew) (Diptera: Phoridae). Micron 36:191–194

    Article  PubMed  Google Scholar 

  • Sulaiman S, Othman MZ, Aziz AH (2000) Isolations of enteric pathogens from synanthropic flies trapped in downtown Kuala Lumpur. J Vector Ecol 25:90–93

    PubMed  CAS  Google Scholar 

  • Tan SW, Yap KL, Lee HI (1997) Mechanical transport of rotavirus by the legs and wings of Musca domestica (Diptera: Muscidae). J Med Entomol 34:527–531

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work received support from the Faculty of Medicine Endowment Fund for Medical Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. L. Sukontason.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sukontason, K.L., Bunchu, N., Methanitikorn, R. et al. Ultrastructure of adhesive device in fly in families calliphoridae, muscidae and sarcophagidae, and their implication as mechanical carriers of pathogens. Parasitol Res 98, 477–481 (2006). https://doi.org/10.1007/s00436-005-0100-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-005-0100-0

Keywords

Navigation