Skip to main content
Log in

Assessment of a liposomal formulation of ivermectin in rabbit after a single subcutaneous administration

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Ivermectin is a member of the macrocyclic lactone family widely used in livestock, pets, and humans as a potent parasiticide. Slight differences in formulation may change the plasma kinetics and efficacy of these compounds. The aim of the study is to evaluate the ability of a liposomal formulation of ivermectin to generate an efficient exposure of the animal to the drug. Ten rabbits were subcutaneously administered with 0.3 mg kg−1 of ivermectin using Ivomec (n=5) or a liposomal formulation (n=5). The areas under serum concentration–time curve were similar after both treatments, indicating the same bioavailability for the two formulations. However, the liposomal formulation gave a higher C max value (33.33 ng ml−1) compared with Ivomec (20.82 ng ml−1) and a significantly faster absorption as indicated by the T max of 0.23 days compared with 1.13 days for the Ivomec formulation. The use of liposomal formulation shows promise as this system improves the efficacy of ivermectin and related drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen TM, Hansen CB, Guo LS (1993) Subcutaneous administration of liposomes: a comparison with the intravenous and intraperitoneal routes of injection. Biochim Biophys Acta 1150:9–16

    Article  PubMed  CAS  Google Scholar 

  • Allen TM, Hansen CB, Daniel E, Lopes de Meneres DE (1995) Pharmacokinetics of long-circulating liposomes. Adv Drug Deliv Rev 16:267–284

    Article  CAS  Google Scholar 

  • Alvinerie M, Sutra JF, Badri M, Galtier P (1995) Determination of moxidectin in plasma by high-performance liquid chromatography with automated solid-phase extraction and fluorescence detection. J Chromatogr B Biomed Appl 674:119–124

    Article  PubMed  CAS  Google Scholar 

  • Alvinerie M, Escudero E, Sutra JF, Eeckhoutte C, Galtier P (1998) The pharmacokinetics of moxidectin after oral and subcutaneous administration to sheep. Vet Res 29:113–118

    PubMed  CAS  Google Scholar 

  • Baggot JD, McKellar QA (1994) The absorption, distribution and elimination of anthelmintic drugs: the role of pharmacokinetics. J Vet Pharmacol Ther 17:409–419

    PubMed  CAS  Google Scholar 

  • Bakker-Woudenberg IA, Lokerse AF, ten Kate MT, Melissen PM, van Vianen W, van Etten EW (1993) Liposomes as carriers of antimicrobial agents or immunomodulatory agents in the treatment of infections. Eur J Clin Microbiol Infect Dis 12 (Suppl 1):S61–S67

    Article  PubMed  CAS  Google Scholar 

  • Bassissi MF, Alvinerie M, Lespine A (2004a) Macrocyclic lactones: distribution in plasma lipoproteins of several animal species including humans. Comp Biochem Physiol C Toxicol Pharmacol 138:437–444

    Article  PubMed  Google Scholar 

  • Bassissi MF, Lespine A, Alvinerie M (2004b) Enhancement of oral moxidectin bioavailability in rabbits by lipid co-administration. Parasitol Res 94:188–192

    Article  PubMed  Google Scholar 

  • Chiu SH, Sestokas E, Taub R, Buhs RP, Green M, Sestokas R, Vandenheuvel WJ, Arison BH, Jacob TA (1986) Metabolic disposition of ivermectin in tissues of cattle, sheep, and rats. Drug Metab Dispos 14:590–600

    PubMed  CAS  Google Scholar 

  • Clark SL, Crowley AJ, Schmidt PG, Donoghue AR, Piche CA (2004) Long-term delivery of ivermectin by use of poly(D,L-lactic-co-glycolic) acid microparticles in dogs. Am J Vet Res 65:752–757

    Article  PubMed  CAS  Google Scholar 

  • de Melo AL, Silva-Barcellos NM, Demicheli C, Frezard F (2003) Enhanced schistosomicidal efficacy of tartar emetic encapsulated in pegylated liposomes. Int J Pharm 255:227–230

    Article  PubMed  Google Scholar 

  • de Montigny P, Shim JS, Pivnichny JV (1990) Liquid chromatographic determination of ivermectin in animal plasma with trifluoroacetic anhydride and N-methylimidazole as the derivatization reagent. J Pharm Biomed Anal 8:507–511

    Article  PubMed  Google Scholar 

  • Dourmishev A, Serafimova D, Dourmishev L (1998) Efficacy and tolerance of oral ivermectin in scabies. J Eur Acad Dermatol Venereol 11:247–251

    Article  PubMed  CAS  Google Scholar 

  • Dvoroznakova E, Hrckova G, Boroskova Z, Velebny S, Dubinsky P (2004) Effect of treatment with free and liposomized albendazole on selected immunological parameters and cyst growth in mice infected with Echinococcus multilocularis. Parasitol Int 53:315–325

    Article  PubMed  CAS  Google Scholar 

  • Hennessy DR (1997) Modifying the formulation or delivery mechanism to increase the activity of anthelmintic compounds. Vet Parasitol 72:367–382 (discussion 382–390)

    Article  PubMed  CAS  Google Scholar 

  • Hennessy DR, Alvinerie MR (2002) Pharmacokinetics of the macrocyclic lactones: conventional wisdom and new paradigism. In: Vercruysse J, Rew RS (eds) Macrocyclic lactones and antiparasitic therapy. CABI, Wallingford, pp 203–213

    Google Scholar 

  • Hrckova G, Velebny S, Corba J (1998) Effects of free and liposomized praziquantel on the surface morphology and motility of Mesocestoides vogae tetrathyridia (syn. M. corti; Cestoda: Cyclophyllidea) in vitro. Parasitol Res 84:230–238

    Article  PubMed  CAS  Google Scholar 

  • Kim S (1993) Liposomes as carriers of cancer chemotherapy. Current status and future prospects. Drugs 46:618–638

    Article  PubMed  CAS  Google Scholar 

  • Kurzchalia TV, Ward S (2003) Why do worms need cholesterol? Nat Cell Biol 5:684–688

    Article  PubMed  CAS  Google Scholar 

  • Leak LV (1971) Studies on the permeability of lymphatic capillaries. J Cell Biol 50:300–323

    Article  PubMed  CAS  Google Scholar 

  • Lespine A, Sutra JF, Dupuy J, Alvinerie M, Aumont G (2004) The influence of parasitism on the pharmacokinetics of moxidectin in lambs. Parasitol Res 93:121–126

    Article  PubMed  Google Scholar 

  • Liu X, Sun Q, Wang H, Zhang L, Wang JY (2005) Microspheres of corn protein, zein, for an ivermectin drug delivery system. Biomaterials 26:109–115

    Article  PubMed  Google Scholar 

  • Lo PK, Fink DW, Williams JB, Blodinger J (1985) Pharmacokinetic studies of ivermectin: effects of formulation. Vet Res Commun 9:251–268

    Article  PubMed  CAS  Google Scholar 

  • Matyash V, Geier C, Henske A, Mukherjee S, Hirsh D, Thiele C, Grant B, Maxfield FR, Kurzchalia TV (2001) Distribution and transport of cholesterol in Caenorhabditis elegans. Mol Biol Cell 12:1725–1736

    PubMed  CAS  Google Scholar 

  • Mourao SC, Costa PI, Salgado HR, Gremiao MP (2005) Improvement of antischistosomal activity of praziquantel by incorporation into phosphatidylcholine-containing liposomes. Int J Pharm 295:157–162

    Article  PubMed  CAS  Google Scholar 

  • Olson F, Hunt CA, Szoka FC, Vail WJ, Papahadjopoulos D (1979) Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes. Biochim Biophys Acta 557:9–23

    Article  PubMed  CAS  Google Scholar 

  • Oussoren C, Storm G (2001) Liposomes to target the lymphatics by subcutaneous administration. Adv Drug Deliv Rev 50:143–156

    Article  PubMed  CAS  Google Scholar 

  • Perez R, Cabezas I, Godoy C, Rubilar L, Munoz L, Arboix M, Castells G, Alvinerie M (2002) Pharmacokinetics of doramectin and ivermectin after oral administration in horses. Vet J 163:161–167

    Article  PubMed  CAS  Google Scholar 

  • Rumjanek FD, Simpson AJ (1980) The incorporation and utilization of radiolabelled lipids by adult Schistosoma mansoni in vitro. Mol Biochem Parasitol 1:31–44

    Article  PubMed  CAS  Google Scholar 

  • Satou T, Horiuchi A, Akao N, Koike K, Fujita K, Nikaido T (2005) Toxocara canis: search for a potential drug amongst beta-carboline alkaloids—in vitro and mouse studies. Exp Parasitol 110:134–139

    Article  PubMed  CAS  Google Scholar 

  • Sovell JR, Holmes JC (1996) Efficacy of ivermectin against nematodes infecting field populations of snowshoe hares (Lepus americanus) in Yukon, Canada. J Wildl Dis 32:23–30

    PubMed  CAS  Google Scholar 

  • Tagboto SK, Townson S (1996) Onchocerca volvulus and O. lienalis: the microfilaricidal activity of moxidectin compared with that of ivermectin in vitro and in vivo. Ann Trop Med Parasitol 90:497–505

    PubMed  CAS  Google Scholar 

  • Wagner R, Wendlberger U (2000) Field efficacy of moxidectin in dogs and rabbits naturally infested with Sarcoptes spp., Demodex spp. and Psoroptes spp. mites. Vet Parasitol 93:149–158

    Article  PubMed  CAS  Google Scholar 

  • Wright FC, Riner JC (1985) Comparative efficacy of injection routes and doses of ivermectin against Psoroptes in rabbits. Am J Vet Res 46:752–754

    PubMed  CAS  Google Scholar 

  • Yamaoka K, Nakagawa T, Uno T (1978) Application of Akaike’s information criterion (AIC) in the evaluation of linear pharmacokinetic equations. J Pharmacokinet Biopharm 6:165–175

    Article  PubMed  CAS  Google Scholar 

  • Yamaoka K, Tanigawara Y, Nakagawa T, Uno T (1981) A pharmacokinetic analysis program (multi) for microcomputer. J Pharmacobiodyn 4:879–885

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We thank Michel Record for helping in liposome preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Alvinerie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bassissi, F., Lespine, A. & Alvinerie, M. Assessment of a liposomal formulation of ivermectin in rabbit after a single subcutaneous administration. Parasitol Res 98, 244–249 (2006). https://doi.org/10.1007/s00436-005-0073-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-005-0073-z

Keywords

Navigation