Skip to main content

Advertisement

Log in

Cell structure and cytokinesis alterations in multidrug-resistant Leishmania (Leishmania) amazonensis

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Multidrug-resistant Leishmania (Leishmania) amazonensis may be obtained by in vitro selection with vinblastine. In order to determine whether this phenotype is linked to structural alterations, we analyzed the cell architecture by electron microscopy. The vinblastine resistant CL2 clone of L. (L.) amazonensis, but not wild-type parasites, showed a cytokinesis dysfunction. The CL2 promastigotes had multiple nuclei, kinetoplasts and flagella, suggesting that vinblastine resistance may be associated with truncated cell division. The subpellicular microtubule plasma membrane connection was also affected. Wild-type parasites treated with vinblastine displayed similar alterations, presenting lobulated and multinucleated cells. Taken together, these data indicate that antimicrotubule drug-selected parasites may show evidence of the mutation of cytoskeleton proteins, impairing normal cell function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bhattacharya G, Salem MM, Werbovetz KA (2002) Antileishmanial dinitroaniline sulfonamides with activity against parasite tubulin. Bioorg Med Chem Lett 12:2395–2398

    CAS  PubMed  Google Scholar 

  • Bhattacharya G, Herman J, Delfin D et al (2004) Synthesis and antitubulin activity of N(1)- and N(4)-substituted 3,5-dinitro sulfanilamides against African trypanosomes and Leishmania. J Med Chem 47:1823–1832

    CAS  PubMed  Google Scholar 

  • Cabral F (2001) Factors determining cellular mechanisms of resistance to antimitotic drugs. Drug Resist Updat 4:3–8

    CAS  PubMed  Google Scholar 

  • Cabral F, Sobel ME, Gottesman MM (1980) CHO mutants resistant to colchicine, colcemid or griseofulvin have an altered beta-tubulin. Cell 20:29–36

    CAS  PubMed  Google Scholar 

  • Chan MM, Fong D (1990) Inhibition of leishmanias but not host macrophages by the antitubulin herbicide trifluralin. Science 249:924–926

    CAS  PubMed  Google Scholar 

  • Chan MM, Grogl M, Callahan H, Fong D (1995) Efficacy of the herbicide trifluralin against four P-glycoprotein-expressing strains of Leishmania. Antimicrob Agents Chemother 39:1609–1611

    CAS  PubMed  Google Scholar 

  • Chow LM, Wong AK, Ullman B, Wirth DF (1993) Cloning and functional analysis of an extrachromosomally amplified multidrug resistance-like gene in Leishmania enriettii. Mol Biochem Parasitol 60:195–208

    CAS  PubMed  Google Scholar 

  • Coderre JA, Beverley SM, Schimke RT, Santi DV (1983) Overproduction of a bifunctional thymidylate synthetase-dihydrofolate reductase and DNA amplification in methotrexate-resistant Leishmania tropica. Proc Natl Acad Sci U S A 80:2132–2136

    CAS  PubMed  Google Scholar 

  • Court JB, Burn C, Louis DS, Moore JL (1993) The survival of cytochalasin-induced polykaryons following exposure to cytotoxic agents. Cell Biol Int 17:291–303

    CAS  PubMed  Google Scholar 

  • Croft SL, Yardley V (2002) Chemotherapy of leishmaniasis. Curr Pharm Des 8:319–342

    CAS  PubMed  Google Scholar 

  • Dantas AP, Barbosa HS, De Castro SL (2003) Biological and ultrastructural effects of the anti-microtubule agent taxol against Trypanosoma cruzi. J Submicrosc Cytol Pathol 35:287–294

    CAS  PubMed  Google Scholar 

  • De Souza W (1989) Components of the cell surface of trypanosomatids. Prog Protistol 3:87–184

    Google Scholar 

  • De Souza W (2002) Special organelles of some pathogenic protozoa. Parasitol Res 88:1013–1025

    PubMed  Google Scholar 

  • Desjeux C (2000) Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis 27:305–318

    Google Scholar 

  • Dumontet C (2000) Mechanisms of action and resistance to tubulin-binding agents. Expert Opin Investig Drugs 9:779–788

    CAS  PubMed  Google Scholar 

  • Erokhina MV, Shtil AA, Shushanov SS, Sidorova TA, Stavrovskaya AA (1994) Partial restoration of the actin cytoskeleton in transformed Syrian hamster fibroblasts selected for low levels of ‘typical’ multidrug resistance. FEBS Lett 341:295–298

    CAS  PubMed  Google Scholar 

  • Fine RL, Chambers TC, Sachs CW (1996) P-glycoprotein, multidrug resistance and protein kinase C. Oncologist 1:261–268

    CAS  PubMed  Google Scholar 

  • Fu D, Bebawy M, Kable EP, Roufogalis BD (2004) Dynamic and intracellular trafficking of P-glycoprotein-EGFP fusion protein: implications in multidrug resistance in cancer. Int J Cancer 109:174–181

    CAS  PubMed  Google Scholar 

  • Grellier P, Sinou V, Garreau-de Loubresse N, Bylen E, Boulard Y, Schrevel J (1999) Selective and reversible effects of vinca alkaloids on Trypanosoma cruzi epimastigote forms: blockage of cytokinesis without inhibition of the organelle duplication. Cell Motil Cytoskeleton 42:36–47

    CAS  PubMed  Google Scholar 

  • Grogl M, Martin RK, Oduola AM, Milhous WK, Kyle DE (1991) Characteristics of multidrug resistance in Plasmodium and Leishmania: detection of P-glycoprotein-like components. Am J Trop Med Hyg 45:98–111

    CAS  PubMed  Google Scholar 

  • Gueiros-Filho FJ, Viola JP, Gomes FC et al (1995) Leishmania amazonensis: multidrug resistance in vinblastine-resistant promastigotes is associated with rhodamine 123 efflux, DNA amplification, and RNA overexpression of a Leishmania mdr1 gene. Exp Parasitol 81:480–490

    CAS  PubMed  Google Scholar 

  • Gull K (2001) Protist tubulins: new arrivals, evolutionary relationships and insights to cytoskeletal function. Curr Opin Microbiol 4:427–432

    CAS  PubMed  Google Scholar 

  • Havens CG, Bryant N, Asher L et al (2000) Cellular effects of leishmanial tubulin inhibitors on L. donovani. Mol Biochem Parasitol 110:223–236

    CAS  PubMed  Google Scholar 

  • Henderson DM, Sifri CD, Rodgers M, Wirth DF, Hendrickson N, Ullman B (1992) Multidrug resistance in Leishmania donovani is conferred by amplification of a gene homologous to the mammalian mdr1 gene. Mol Cell Biol 12:2855–2865

    CAS  PubMed  Google Scholar 

  • Jacobs S (2002) An oral drug for leishmaniasis. N Engl J Med 347:1737–1738

    PubMed  Google Scholar 

  • Jaffrezou JP, Dumontet C, Derry WB et al (1995) Novel mechanism of resistance to paclitaxel (Taxol) in human K562 leukemia cells by combined selection with PSC 833. Oncol Res 7:517–527

    CAS  PubMed  Google Scholar 

  • Jha TK, Sundar S, Thakur CP et al (1999) Miltefosine, an oral agent, for the treatment of Indian visceral leishmaniasis. N Engl J Med 341:1795–1800

    CAS  PubMed  Google Scholar 

  • Kavallaris M, Kuo DY, Burkhart CA et al (1997) Taxol-resistant epithelial ovarian tumors are associated with altered expression of specific beta-tubulin isotypes. J Clin Invest 100:1282–1293

    CAS  PubMed  Google Scholar 

  • Kohl L, Robinson D, Bastin P (2003) Novel roles for the flagellum in cell morphogenesis and cytokinesis of trypanosomes. EMBO J 22:5336–5346

    CAS  PubMed  Google Scholar 

  • Lange K, Gartzke J (2001) Microvillar cell surface as a natural defense system against xenobiotics: a new interpretation of multidrug resistance. Am J Physiol Cell Physiol 281:C369–C385

    CAS  PubMed  Google Scholar 

  • Leandro C, Campino L (2003) Leishmaniasis: efflux pumps and chemoresistance. Int J Antimicrob Agents 22:352–357

    CAS  PubMed  Google Scholar 

  • Liu LX, Weller PF (1996) Antiparasitic drugs. N Engl J Med 334:1178–1184

    CAS  PubMed  Google Scholar 

  • Luciani F, Molinari A, Lozupone F et al (2002) P-glycoprotein-actin association through ERM family proteins: a role in P-glycoprotein function in human cells of lymphoid origin. Blood 99:641–648

    CAS  PubMed  Google Scholar 

  • Manetti F, Maccari L, Corelli F, Botta M (2004) 3-D QSAR models of interactions between beta-tubulin and microtubule stabilizing antimitotic agents (MSAA): a survey on taxanes and epothilones. Curr Top Med Chem 4:203–217

    CAS  PubMed  Google Scholar 

  • Matthews KR, Sherwin T, Gull K (1995) Mitochondrial genome repositioning during the differentiation of the African trypanosome between life cycle forms is microtubule mediated. J Cell Sci 108:2231–2239

    CAS  PubMed  Google Scholar 

  • McKeegan KS, Borges-Walmsley MI, Walmsley AR (2003) The structure and function of drug pumps: an update. Trends Microbiol 11:21–297

    CAS  PubMed  Google Scholar 

  • Molyneux DH, Killick-Kendrick R (1987) Morphology, ultra-structure and life cycles. In: Peters W, Killick-Kendrick R (eds) The leishmaniases in biology and edicine. Academic Press, New York, pp 121–176

  • Moulay L, Robert-Gero M, Brown S, Gendron MC, Tournier F (1996) Sinefungin and taxol effects on cell cycle and cytoskeleton of Leishmania donovani promastigotes. Exp Cell Res 226:283–291

    CAS  PubMed  Google Scholar 

  • Murta SM, Dos Santos WG, Anacleto C, Nirde P, Moreira ES, Romanha AJ (2001) Drug resistance in Trypanosoma cruzi is not associated with amplification or overexpression of P-glycoprotein (PGP) genes. Mol Biochem Parasitol 117:223–228

    CAS  PubMed  Google Scholar 

  • Okada Y (1997) Volume expansion-sensing outward-rectifier Cl-channel: fresh start to the molecular identity and volume sensor. Am J Physiol 273:C755-C789

    CAS  PubMed  Google Scholar 

  • Perez-Victoria JM, Di Pietro A, Barron D, Ravelo AG, Castanys S, Gamarro F (2002) Multidrug resistance phenotype mediated by the P-glycoprotein-like transporter in Leishmania: a search for reversal agents. Curr Drug Targets 3:311–333

    CAS  PubMed  Google Scholar 

  • Perez-Victoria FJ, Castanys S, Gamarro F (2003a) Leishmania donovani resistance to miltefosine involves a defective inward translocation of the drug. Antimicrob Agents Chemother 47:2397–2403

    CAS  PubMed  Google Scholar 

  • Perez-Victoria FJ, Gamarro F, Ouellette M, Castanys S (2003b) Functional cloning of the miltefosine transporter. A novel P-type phospholipid translocase from Leishmania involved in drug resistance. J Biol Chem 278:49965–49971

    CAS  PubMed  Google Scholar 

  • Pimenta PF, De Souza W (1985) Fine structure and cytochemistry of the endoplasmic reticulum and its association with the plasma membrane of Leishmania mexicana amazonensis. J Submicrosc Cytol 17:413–419

    CAS  PubMed  Google Scholar 

  • Ploubidou A, Robinson DR, Docherty RC, Ogbadoyi EO, Gull K (1999) Evidence for novel cell cycle checkpoints in trypanosomes: kinetoplast segregation and cytokinesis in the absence of mitosis. J Cell Sci 112:4641–4650

    CAS  PubMed  Google Scholar 

  • Ponte-Sucre A (2003) Physiological consequences of drug resistance in Leishmania and their relevance for chemotherapy. Kinetoplastid Biol Dis 2:14

    PubMed  Google Scholar 

  • Sahasrabuddhe AA, Bajpai VK, Gupta CM (2004) A novel form of actin in Leishmania: molecular characterization, subcellular localization and association with subpellicular microtubules. Mol Biochem Parasitol 134:105–114

    CAS  PubMed  Google Scholar 

  • Sangster N, Batterham P, Chapman HD et al (2002) Resistance to antiparasitic drugs: the role of molecular diagnosis. Int J Parasitol 32:637–653

    CAS  PubMed  Google Scholar 

  • Saraiva EM, Vannier-Santos MA, Silva-Filho FC, De Souza W (1989) Anionic site behavior in Leishmania and its role in the parasite-macrophage interaction. J Cell Sci 93:481–489

    PubMed  Google Scholar 

  • Sardini A, Mintenig GM, Valverde MA et al (1994) Drug efflux mediated by the human multidrug resistance P-glycoprotein is inhibited by cell swelling. J Cell Sci 107:3281–3290

    CAS  PubMed  Google Scholar 

  • Singh N, Singh RT, Sundar S (2003) Novel mechanism of drug resistance in kala azar field isolates. J Infect Dis 188:600–607

    CAS  PubMed  Google Scholar 

  • Takeshita H, Kusuzaki K, Ashihara T, Gebhardt MC, Mankin HJ, Hirasawa Y (1998) Actin organization associated with the expression of multidrug resistant phenotype in osteosarcoma cells and the effect of actin depolymerization on drug resistance. Cancer Lett 126:75–81

    CAS  PubMed  Google Scholar 

  • Tannert A, Pohl A, Pomorski T, Herrmann A (2003) Protein-mediated transbilayer movement of lipids in eukaryotes and prokaryotes: the relevance of ABC transporters. Int J Antimicrob Agents 22:177–187

    CAS  PubMed  Google Scholar 

  • Tsuruo T, Iida H (1986) Effects of cytochalasins and colchicine on the accumulation and retention of daunomycin and vincristine in drug resistant tumor cells. Biochem Pharmacol 35:1087–1090

    CAS  PubMed  Google Scholar 

  • Vannier-Santos MA, Pimenta PF, De Souza W (1988) Effects of phorbol ester on Leishmania mexicana amazonensis: an ultrastructural and cytochemical study. J Submicrosc Cytol Pathol 20:583–593

    CAS  PubMed  Google Scholar 

  • Vannier-Santos MA, Saraiva EM, Martiny A, Neves A, De Souza W (1992) Fibronectin shedding by Leishmania may influence the parasite-macrophage interaction. Eur J Cell Biol 59:389–397

    CAS  PubMed  Google Scholar 

  • Vannier-Santos MA, Urbina JA, Martiny A, Neves A, De Souza W (1995) Alterations induced by the antifungal compounds ketoconazole and terbinafine in Leishmania. J Eukaryot Microbiol 42:337–346

    CAS  PubMed  Google Scholar 

  • Vannier-Santos MA, Martiny A, Se Souza W (2002) Cell biology of Leishmania spp.: invading and evading. Curr Pharm Des 8:297–318

    CAS  PubMed  Google Scholar 

  • Vedrenne C, Giroud C, Robinson DR et al. (2002) Two related subpellicular cytoskeleton-associated proteins in Trypanosoma brucei stabilize microtubules. Mol Biol Cell 13:1058–1070

    CAS  PubMed  Google Scholar 

  • Werbovetz KA (2002) Tubulin as an antiprotozoal drug target. Mini Rev Med Chem 2:519–529

    CAS  PubMed  Google Scholar 

  • Wong AK, Chow LM, Wirth DF (1994) A homologous recombination strategy to analyze the vinblastine resistance property of the V-circle in Leishmania. Mol Biochem Parasitol 64:75–86

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Mr. Claudio P. Figueira for technical assistance. This project was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal do Ensino Superior (CAPES), Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Programa de Núcleos de Excelência (PRONEX/MCT), Fundação Oswaldo Cruz, FIOCRUZ and Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB). All the experiments performed here comply with Brazilian law and FIOCRUZ—Ministry of Health guidelines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Vannier-Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borges, V.M., Lopes, U.G., De Souza, W. et al. Cell structure and cytokinesis alterations in multidrug-resistant Leishmania (Leishmania) amazonensis. Parasitol Res 95, 90–96 (2005). https://doi.org/10.1007/s00436-004-1248-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-004-1248-8

Keywords

Navigation