Skip to main content

The bacterial catalase from filarial DNA preparations derives from common pseudomonad contaminants and not from Wolbachia endosymbionts

Abstract

Wolbachia are obligatory endosymbionts in many species of filarial nematodes. Certain bacterial molecules induce antibody responses in mammalian hosts infected with filariae, while others activate inflammatory responses that contribute to pathology. These findings, coupled with antibiotic studies demonstrating the dependence of filarial embryogenesis on the presence of Wolbachia, have intensified research on Wolbachia–nematode interactions, and the effects of Wolbachia molecules on the mammalian immune system. By amplification and sequencing of 16S rDNA and catalase sequences, we show that filarial DNA samples prepared from nematodes collected under typical conditions are frequently contaminated with Pseudomonas DNA. Analysis of a published DNA fragment containing a catalase attributed to the Wolbachia of Onchocerca volvulus showed it to be most like Pseudomonas, both in terms of sequence similarity and genomic organization. Additionally, there was no obvious catalase in either of two available Wolbachia genome sequences. Contamination of filarial DNA with bacterial sequences other than Wolbachia can complicate studies of the role of these symbionts in filarial biology.

This is a preview of subscription content, access via your institution.

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  2. Bandi C, Anderson TJC, Genchi C, Blaxter ML (1998) Phylogeny of Wolbachia in filarial nematodes. Proc R Soc Lond B Biol Sci 25:2407–2413

    Article  Google Scholar 

  3. Bandi C, Trees AJ, Brattig NW (2001) Wolbachia in filarial nematodes: evolutionary aspects and implications for the pathogenesis and treatment of filarial diseases. Vet Parasitol 98:215–238

    Article  CAS  PubMed  Google Scholar 

  4. Bazzochi C, Ceciliani F, McCall JW, Ricci I, Genchi C, Bandi C (2000) Antigenic role of the endosymbionts of filarial nematodes: IgG response against the Wolbachia surface protein in cats infected with Dirofilaria immitis. Proc R Soc Lond B Biol Sci 267:2511–2516

    Article  PubMed  Google Scholar 

  5. Brattig NW, Rathjens U, Ernst M, Geisinger F, Renz A, Tischendorf FW (2000) Lipopolysaccharide-like molecules derived from Wolbachia endobacteria of the filaria Onchocerca volvulus are candidate mediators in the sequence of inflammatory and antiinflammatory responses of human monocytes. Microbes Infect 2:1147–1157

    Article  CAS  PubMed  Google Scholar 

  6. Brattig NW, Büttner DW, Hoerauf A (2001) Neutrophil accumulation around Onchocerca worms and chemotaxis of neutrophils are dependent on Wolbachia endobacteria. Microbes Infect 3:439–446

    Article  CAS  PubMed  Google Scholar 

  7. Casiraghi M, Anderson TJ, Bandi C, Bazzocchi C, Genchi C (2001) A phylogenetic analysis of filarial nematodes: comparison with the phylogeny of Wolbachia endosymbionts. Parasitology 122:93–103

    Article  CAS  PubMed  Google Scholar 

  8. Casiraghi M, Bain O, Guerrero R, Martin C, Pocacqua V, Gardner SL, Franceschi A, Bandi C (2004) Mapping the presence of Wolbachia pipientis on the phylogeny of filarial nematodes: evidence for symbiont loss during evolution. Int J Parasitol 34:191–203

    Article  PubMed  Google Scholar 

  9. Cross HF, Haarbrink M, Egerton G, Yazdanbakhsh M, Taylor MJ (2001) Severe reactions to filarial chemotherapy and release of Wolbachia endosymbionts into blood. Lancet 358:1873–1875

    Article  CAS  PubMed  Google Scholar 

  10. Fischer P, Bonow I, Büttner DW, Kamal IH, Liebau E (2003) An aspartate aminotransferase of Wolbachia endobacteria from Onchocerca volvulus is recognized by IgG1 antibodies from residents of endemic areas. Parasitol Res 90:38–47

    PubMed  Google Scholar 

  11. Foster JM, Kumar S, Ganatra MB, Kamal IH, Ware J, Ingram J, Pope-Chappell J, Guiliano D, Whitton C, Daub J, Blaxter ML, Slatko BE (2004) Construction of BAC libraries from the parasitic nematode Brugia malayi and physical mapping of the genome of its Wolbachia endosymbiont. Int J Parasitol 34:733–746

    Article  CAS  PubMed  Google Scholar 

  12. Ghedin E, Wang S, Foster J, Slatko B (2004) First sequenced genome of a parasitic nematode. Trends Parasitol 20:151–153

    Article  CAS  PubMed  Google Scholar 

  13. Henkle-Dührsen K, Eckelt VHO, Wildenburg G, Blaxter M, Walter RD (1998) Gene structure and localization of a catalase from intracellular bacteria in Onchocerca volvulus. Mol Biochem Parasitol 96:69–81

    Article  PubMed  Google Scholar 

  14. Hoerauf A, Volkmann L, Hamelmann C, Adjei O, Autenreith IB, Fleischer B, Büttner DW (2000) Endosymbiotic bacteria in worms as targets for a novel chemotherapy in filariasis. Lancet 355:1242–1243

    Article  CAS  PubMed  Google Scholar 

  15. Hoerauf A, Mand S, Adjei O, Fleischer B, Büttner DW (2001) Depletion of Wolbachia endobacteria in Onchocerca volvulus by doxycycline and microfilaridermia after ivermectin treatment. Lancet 357:1415–1416

    Article  CAS  PubMed  Google Scholar 

  16. Hoerauf A, Mand S, Fischer K, Kruppa T, Marfo-Debrekyei Y, Debrah AY, Pfarr KM, Adjei O, Büttner DW (2003) Doxycycline as a novel strategy against bancroftian filariasis—depletion of Wolbachia endosymbionts from Wuchereria bancrofti and stop of microfilaria production. Med Microbiol Immunol 192:211–216

    Article  CAS  PubMed  Google Scholar 

  17. Keiser PB, Reynolds SM, Awadzi K, Ottesen EA, Taylor MJ, Nutman TB (2002) Bacterial endosymbionts of Onchocerca volvulus in the pathogenesis of posttreatment reactions. J Infect Dis 185:805–811

    Article  PubMed  Google Scholar 

  18. Kozek WJ (1977) Transovarially-transmitted intracellular microorganisms in adult and larval stages of Brugia malayi. J Parasitol 63:992–1000

    CAS  PubMed  Google Scholar 

  19. Langworthy NG, Renz A, Mackenstedt U, Henkle-Dührsen K, Bronsvoort MB de C, Tanya VN, Donnelly MJ, Trees AJ (2000) Macrofilaricidal activity of tetracycline against the filarial nematode Onchocerca ochengi: elimination of Wolbachia precedes worm death and suggests a dependent relationship. Proc R Soc Lond B Biol Sci 267:1063–1069

    Article  CAS  PubMed  Google Scholar 

  20. Leifert C, Morris CE, Waites WM (1994) Ecology of microbial saprophytes and pathogens in tissue culture and field-grown plants: reasons for contamination problems in vitro. Crit Rev Plant Sci 13:139–183

    Google Scholar 

  21. McLaren DJ, Worms MJ, Laurence BR, Simpson MG (1975) Micro-organisms in filarial larvae (Nematoda). Trans R Soc Trop Med Hyg 69:509–514

    Article  CAS  PubMed  Google Scholar 

  22. Palleroni NJ (1992) Introduction to the family Pseudomonadaceae. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer K-H (eds) The Prokaryotes, 2nd edn. Springer, Berlin Heidelberg New York, pp 3071–3085

  23. Punkosdy GA, Dennis VA, Lasater BL, Tzertzinis G, Foster JM, Lammie PJ (2001) Detection of serum IgG antibodies specific for Wolbachia surface protein in rhesus monkeys infected with Brugia malayi. J Infect Dis 184:385–389

    Article  CAS  PubMed  Google Scholar 

  24. Punkosdy GA, Addiss DG, Lammie PJ (2003) Characterization of antibody responses to Wolbachia surface protein in humans infected with lymphatic filariasis. Infect Immunol 71:5104–5114

    Article  CAS  Google Scholar 

  25. Saint André A, Blackwell NM, Hall LR, Hoerauf A, Brattig NW, Volkmann L, Taylor MJ, Ford L, Hise AG, Lass JH, Diaconu E, Pearlman E (2002) The role of endosymbiotic Wolbachia bacteria in the pathogenesis of river blindness. Science 295:1892–1895

    Article  PubMed  Google Scholar 

  26. Sironi M, Bandi C, Sacchi L, Di Sacco B, Damiani G, Genchi C (1995) Molecular evidence for a close relative of the arthropod endosymbiont Wolbachia in a filarial worm. Mol Biochem Parasitol 74:223–227

    Article  CAS  PubMed  Google Scholar 

  27. Taylor MJ, Hoerauf A (1999) Wolbachia bacteria of filarial nematodes. Parasitol Today 15:437–442

    Article  CAS  PubMed  Google Scholar 

  28. Taylor MJ, Hoerauf A (2001) A new approach to the treatment of filariasis. Curr Opin Infect Dis 14:727–731

    CAS  PubMed  Google Scholar 

  29. Taylor MJ, Cross HF, Bilo K (2000) Inflammatory responses induced by the filarial nematode Brugia malayi are mediated by lipopolysaccharide-like activity from endosymbiotic Wolbachia bacteria. J Exp Med 191:1429–1435

    Article  CAS  PubMed  Google Scholar 

  30. Widmer F, Seidler RJ, Gillevert PM, Watrud LS, Di Giovanni GD (1998) A highly selective PCR protocol for detecting 16S rRNA genes of the genus Pseudomonas (sensu stricto) in environmental samples. Appl Environ Microbiol 64:2545–2553

    CAS  PubMed  Google Scholar 

  31. Williams SA, Lizotte-Waniewski MR, Foster J, Guiliano D, Daub J, Scott A, Slatko B, Blaxter ML (2000) The filarial genome project: analysis of the nuclear, mitochondrial and endosymbiont genomes of Brugia malayi. Int J Parasitol 30:411–419

    Article  CAS  PubMed  Google Scholar 

  32. Wu M, Sun LV, Vamathevan J, Riegler M, Deboy R, Brownlie JC, McGraw EA, Martin W, Esser C, Ahmadinejad N, Wiegand C, Madupu R, Beanan MJ, Brinkac LM, Daugherty SC, Durkin AS, Kolonay JF, Nelson WC, Mohamoud Y, Lee P, Berry K, Young MB, Utterback T, Weidman J, Nierman WC, Paulsen IT, Nelson KE, Tettelin H, O’Neill SL, Eisen JA (2004) Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements. PLoS Biology 2:0327–0341

    Article  CAS  Google Scholar 

  33. Zhang H, Kallimanis A, Koukkou AI, Drainas C (2004) Isolation and characterization of novel bacteria degrading polycyclic aromatic hydrocarbons from polluted Greek soils. Appl Microbiol Biotechnol 65:124–131

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was made possible by funding from MIUR-COFIN (coordinator: Claudio Genchi, Italy), the UK Medical Research Council (UK), and internal funding from New England Biolabs (USA). The experiments reported in this paper were carried out in accordance with all relevant laws of the countries concerned.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jeremy Foster.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Foster, J., Baldo, L., Blaxter, M. et al. The bacterial catalase from filarial DNA preparations derives from common pseudomonad contaminants and not from Wolbachia endosymbionts. Parasitol Res 94, 141–146 (2004). https://doi.org/10.1007/s00436-004-1195-4

Download citation

Keywords

  • Catalase
  • Ferritin
  • Codon Usage
  • Filarial Nematode
  • Sterile Plastic Tube