Skip to main content
Log in

Recombination does not generate pinworm susceptibility during experimental crosses between two mouse subspecies

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The susceptibility to Aspiculuris tetraptera of European Mus musculus hybrids is thought to reflect the disruption of genomic co-adaptation through recombination of the parental genomes. Here, we compared the susceptibility to this parasite between parents and experimental hybrids (intersubspecific until F4, intrasubspecific F1, F2) to clarify the contributions of heterosis and subspecies incompatibility. F1 showed hybrid vigor. Unlike intrasubspecific F2, intersubspecific F2 were less resistant than F1, but revealed no increased susceptibility relative to the parents. Intersubspecific F3 and F4 showed the same hybrid vigor as F1. Heterosis contributed most to the resistance, but the differences between intra- and intersubspecific F2 suggested genomic incompatibilities between subspecies. However, the susceptibility did not increase through the recombination process, showing that disruption of co-adaptation does not directly affect resistance. Even if previous studies still support the selective role of parasites in the current hybrid zone, an alternative hypothesis on the origin of hybrid susceptibility is warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adamson ML (1989) Evolutionary biology of the Oxyurida (Nematoda): biofaces of a haplodiploid taxon. Adv Parasitol 28:175–228

    CAS  PubMed  Google Scholar 

  • Anya AO (1966) Studies on the biology of some oxyurid nematodes. II. The hatching of eggs and development of Aspiculuris tetraptera Schultz, within the host. J Helminthol 40:261–268

    CAS  PubMed  Google Scholar 

  • Barton N (2001) The role of hybridization in evolution. Mol Ecol 10:551–568

    CAS  PubMed  Google Scholar 

  • Barton N, Hewitt G (1985) Analysis of hybrid zones. Annu Rev Ecol Syst 16:113–148

    Google Scholar 

  • Behnke JM (1975) Aspiculuris tetraptera in wild Mus musculus. The prevalence of infection in male and female mice. J Helminthol 49:85–90

    CAS  PubMed  Google Scholar 

  • Boissinot S, Boursot P (1997) Discordant phylogeographic patterns between the Y chromosome and the mitochondrial DNA in the house mouse: selection on the Y chromosome? Genetics 146:1019–1034

    CAS  PubMed  Google Scholar 

  • Boursot P, Auffray JC, Britton-Davidian J, Bonhomme F (1993) The evolution of house mice. Annu Rev Ecol Syst 24:119–152

    Article  Google Scholar 

  • Burke JM, Arnold ML (2001) Genetics and the fitness of hybrids. Annu Rev Genet 35:31–52

    Article  CAS  PubMed  Google Scholar 

  • Derothe JM, Loubes C, Orth A, Renaud F, Moulia C (1997) Comparison between patterns of pinworms infection (Aspiculuris tetraptera) in wild and laboratory strains of mice, Mus musculus. Int J Parasitol 27:645–651

    CAS  PubMed  Google Scholar 

  • Derothe JM, Le Brun N, Loubes C, Perriat-Sanguinet M, Moulia C (1999a) Trypanosoma musculi: compared levels of parasitosis in wild and laboratory strains of Mus musculus mice. Exp Parasitol 91:196–198

    CAS  PubMed  Google Scholar 

  • Derothe JM, Le Brun N, Loubes C, Perriat-Sanguinet M, Orth A, Moulia C (1999b) Experimental trypanosomiasis of natural hybrids between house mouse subspecies. Int J Parasitol 29:1011–1016

    CAS  PubMed  Google Scholar 

  • Derothe JM, Le Brun N, Loubes C, Perriat-Sanguinet M, Moulia C (2001) Susceptibility of natural hybrids between house mouse subspecies to Sarcocystis muris. Int J Parasitol 31:15–19

    CAS  PubMed  Google Scholar 

  • Din W, Anand R, Boursot P, Darviche D, Dod B, Jouvin-Marche E, Orth A, Talwar GP, Cazenave PA, Bonhomme F (1996) Origin and radiation of the house mouse: clues from nuclear genes. J Evol Biol 9:519–539

    CAS  Google Scholar 

  • Edmands S (1999) Heterosis and outbreeding depression in interpopulation crosses spanning a wide range of divergence. Evolution 53:1757–1768

    Google Scholar 

  • Goncalves L, Pinto Roberto M, Vicente JJ, Noronha D, Gomes Delir C (1998) Helminth parasites of conventionally maintained laboratory mice. II. Inbred strains with an adaptation of the anal swab technique. Mem Inst Oswaldo Cruz 93:121–126

    CAS  PubMed  Google Scholar 

  • Grant PR, Grant BR (1992) Hybridization of bird species. Science 256:193–197

    Google Scholar 

  • Hewitt GM (1988) Hybrid zones—natural laboratories for evolutionary studies. Trends Evol Ecol 3:158–167

    Article  Google Scholar 

  • Hoffman SM, Brown WM (1995) The molecular mechanism underlying the “rare allele phenomenon” in a subspecific hybrid zone of the California field mouse, Peromyscus californicus. J Mol Evol 41:1165–1169

    CAS  PubMed  Google Scholar 

  • Liersch S, Schimd-Hempel P (1998) Genetic variation within social insect colonies reduces parasite load. Proc R Soc Lond B Biol Sci 265:221–225

    Article  Google Scholar 

  • Lively CM, Craddock C, Vrijenhoek RC (1990) Red queen hypothesis supported by parasitism in sexual and clonal fish. Nature 344:864–866

    Article  Google Scholar 

  • Meagher S (1999) Genetic diversity and Capillaria hepatica (Nematoda) prevalence in Michigan deer mouse populations. Evolution 53:1318–1324

    Google Scholar 

  • Moore WS (1977) An evaluation of narrow hybrid zones in vertebrates. Q Rev Biol 52:263–278

    Article  Google Scholar 

  • Moore WS, Price JP (1993) Nature of selection in the northern flicker hybrid zone and its implication for speciation theory. In: Harrison RG (ed) Hybrid zones and the evolutionary process. Oxford University Press, Oxford, pp 196–225

  • Moulia C (1999) Parasitism of plant and animal hybrids—are facts and fates the same? Ecology 80:392–406

    Google Scholar 

  • Moulia C, Aussel JP, Bonhomme F, Boursot P, Nielsen JT, Renaud F (1991) Wormy mice in a hybrid zone, a genetic control of susceptibility to parasite infection. J Evol Biol 4:679–687

    Google Scholar 

  • Moulia C, Le Brun N, Dallas J, Orth A, Renaud F (1993) Experimental evidence of genetic determinism in high susceptibility to intestinal pinworm infection in mice: a hybrid zone model. Parasitology 106:387–393

    PubMed  Google Scholar 

  • Moulia C, Le Brun N, Loubes C, Marin R, Renaud F (1995) Hybrid vigour against parasites in interspecific crosses between two mice species. Heredity 74:48–52

    PubMed  Google Scholar 

  • Moulia C, Le Brun N, Renaud F (1996) Mouse–parasite interactions: from gene to population. Adv Parasitol 38:120–167

    Google Scholar 

  • Orr HA, Orr LH (1996) Waiting for speciation: the effect of population subdivision on the time of speciation. Evolution 50:1742–1749

    Google Scholar 

  • Piàlek J, Barton N (1997) The spread of an advantageous allele across a barrier: the effect of random drift and selection against heterozygotes. Genetics 145:493–504

    PubMed  Google Scholar 

  • Potts WK, Slev PR (1995) Pathogen-based models favoring MHC genetic diversity. Immunol Rev 143:181–197

    CAS  PubMed  Google Scholar 

  • Rieseberg LH (1997) Hybrid origins of plant species. Annu Rev Ecol Syst 28:359–389

    Article  Google Scholar 

  • Rieseberg LH, Archer MA, Wayne RK (1999) Transgressive segregation, adaptation and speciation. Heredity 83:363–372

    Google Scholar 

  • Sage RD, Heyneman D, Lim KC, Wilson AC (1986) Wormy mice in a hybrid zone. Nature 324:60–63

    CAS  PubMed  Google Scholar 

  • Sage RD, Atchley WR, Capanna E (1993) House mouse as models in systematic biology. Syst Biol 42:523–561

    Google Scholar 

  • Schilthuizen M, Hoekstra RF, Gitenberger E (1999) Selective increase of a rare haplotype in a land snail hybrid zone. Proc R Soc Lond B Biol Sci 266:2181–2185

    Article  Google Scholar 

  • Scott ME, Gibbs HC (1986) Long-term population dynamics of pinworms (Syphacia obvelata and Aspiculuris tetraptera) in mice. J Parasitol 72:652–662

    CAS  PubMed  Google Scholar 

  • Sherrer B (1984) Biostatistique. Gaetan Morin, Paris

  • Taffs LF (1976) Pinworm infections in laboratory rodents: a review. Lab Anim 10:1–13

    CAS  PubMed  Google Scholar 

  • Turelli M, Orr HA (2000) Dominance, epistatis and the genetics of postzygotic isolation. Genetics 154:1663–1679

    CAS  PubMed  Google Scholar 

  • Zuk M, McKean KA (1996) Sex differences in parasitic infections: patterns and processes. Int J Parasitol 26:1009–1024

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We especially thank Annie Orth for providing us with wild-derived strains of the Wild Mouse Repository, François Bonhomme for his many suggestions and support throughout the completion of this project and Janice Britton-Davidian and Serge Morand for their helpful comments to improve this manuscript. These experiments comply with the current laws of the France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Moulia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Derothe, JM., Porcherie, A., Perriat-Sanguinet, M. et al. Recombination does not generate pinworm susceptibility during experimental crosses between two mouse subspecies. Parasitol Res 93, 356–363 (2004). https://doi.org/10.1007/s00436-004-1145-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-004-1145-1

Keywords

Navigation