Skip to main content
Log in

Targeting a DBL3γ domain of the Plasmodium falciparum erythrocyte membrane protein 1 to the surface of Saccharomyces cerevisiae

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The availability of the full genomes of the malarial parasite Plasmodium falciparum and its two hosts, man and Anopheles gambiae, has dramatically increased the demand for protein display systems to study host/parasite interactions at the molecular level. Here, we explored the potential of a Saccharomyces cerevisiae expression and display system that allows proteins of interest to be targeted to the yeast surface. As proof of this principle, we used a P. falciparum erythrocyte membrane protein 1 DBL3γ domain which mediates the binding of P. falciparum-infected erythrocytes to chondroitin-4-sulfate, a host receptor involved in parasite sequestration in the placenta. Our data revealed localization of the DBL3γ domain to the yeast surface, demonstrating the value of the yeast system as a tool for displaying P. falciparum protein fragments. However, binding of the respective yeast strains to chondroitin-4-sulfate could not be demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3a,b

Similar content being viewed by others

References

  • Aikawa M (1988) Human cerebral malaria. Am J Trop Med Hyg 39:3–10

    CAS  PubMed  Google Scholar 

  • Andrews KT, Lanzer M (2002) Maternal malaria: Plasmodium falciparum sequestration in the placenta. Parasitol Res 88:715–723

    Article  PubMed  Google Scholar 

  • Barnwell JW (1989) Cytoadherence and sequestration in falciparum malaria. Exp Parasitol 69:407–412

    Article  CAS  PubMed  Google Scholar 

  • Baruch DI, Pasloske BL, Singh HB, Bi X, Ma XC, Feldman M, Taraschi TF, Howard RJ (1995) Cloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes. Cell 82:77–87

    CAS  PubMed  Google Scholar 

  • Baruch DI, Ma XC, Singh HB, Bi X, Pasloske BL, Howard RJ (1997) Identification of a region of PfEMP1 that mediates adherence of Plasmodium falciparum infected erythrocytes to CD36: conserved function with variant sequence. Blood 90:3766–3775

    CAS  PubMed  Google Scholar 

  • Beucken T van den, Pieters H, Steukers M, Vaart M van der, Ladner RC, Hoogenboom HR, Hufton SE (2003) Affinity maturation of Fab antibody fragments by fluorescent-activated cell sorting of yeast-displayed libraries. FEBS Lett 546:288–294

    Article  PubMed  Google Scholar 

  • Bhatia SK, Swers JS, Camphausen RT, Wittrup KD, Hammer DA (2003) Rolling adhesion kinematics of yeast engineered to express selectins. Biotechnol Prog 19:1033–1037

    Article  CAS  PubMed  Google Scholar 

  • Boder ET, Wittrup KD (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15:553–557

    CAS  PubMed  Google Scholar 

  • Buffet PA, Gamain B, Scheidig C, Baruch D, Smith JD, Hernandez-Rivas R, Pouvelle B, Oishi S, Fujii N, Fusai T, Parzy D, Miller LH, Gysin J, Scherf A (1999) Plasmodium falciparum domain mediating adhesion to chondroitin sulfate A: a receptor for human placental infection. Proc Natl Acad Sci USA 96:12743–12748

    CAS  PubMed  Google Scholar 

  • Chen Q, Heddini A, Barragan A, Fernandez V, Pearce SF, Wahlgren M (2000) The semiconserved head structure of Plasmodium falciparum erythrocyte membrane protein 1 mediates binding to multiple independent host receptors. J Exp Med 192:1–10

    CAS  PubMed  Google Scholar 

  • Craig A, Scherf A (2001) Molecules on the surface of the Plasmodium falciparum infected erythrocyte and their role in malaria pathogenesis and immune evasion. Mol Biochem Parasitol 115:129–143

    CAS  PubMed  Google Scholar 

  • David PH, Hommel M, Miller LH, Udeinya IJ, Oligino LD (1983) Parasite sequestration in Plasmodium falciparum malaria: spleen and antibody modulation of cytoadherence of infected erythrocytes. Proc Natl Acad Sci USA 80:5075–5079

    CAS  PubMed  Google Scholar 

  • Feldhaus M, Siegel R (2004) Flow cytometric screening of yeast surface display libraries. Methods Mol Biol 263:311–332

    Article  CAS  PubMed  Google Scholar 

  • Fried M, Duffy PE (1996) Adherence of Plasmodium falciparum to chondroitin sulfate A in the human placenta. Science 272:1502–1504

    CAS  PubMed  Google Scholar 

  • Gamain B, Smith JD, Miller LH, Baruch DI (2001) Modifications in the CD36 binding domain of the Plasmodium falciparum variant antigen are responsible for the inability of chondroitin sulfate A adherent parasites to bind CD36. Blood 97:3268–3274

    CAS  PubMed  Google Scholar 

  • Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S, Paulsen IT, James K, Eisen JA, Rutherford K, Salzberg SL, Craig A, Kyes S, Chan MS, Nene V, Shallom SJ, Suh B, Peterson J, Angiuoli S, Pertea M, Allen J, Selengut J, Haft D, Mather MW, Vaidya AB, Martin DM, Fairlamb AH, Fraunholz MJ, Roos DS, Ralph SA, McFadden GI, Cummings LM, Subramanian GM, Mungall C, Venter JC, Carucci DJ, Hoffman SL, Newbold C, Davis RW, Fraser CM, Barrell B (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498–511

    Article  CAS  PubMed  Google Scholar 

  • Kieke MC, Shusta EV, Boder ET, Teyton L, Wittrup KD, Kranz DM (1999) Selection of functional T cell receptor mutants from a yeast surface-display library. Proc Natl Acad Sci USA 96:5651–5656

    CAS  PubMed  Google Scholar 

  • Leech JH, Barnwell JW, Miller LH, Howard RJ (1984) Identification of a strain-specific malarial antigen exposed on the surface of Plasmodium falciparum-infected erythrocytes. J Exp Med 159:1567–1575

    CAS  PubMed  Google Scholar 

  • Miller LH, Baruch DI, Marsh K, Doumbo OK (2002) The pathogenic basis of malaria. Nature 415:673–679

    Article  CAS  PubMed  Google Scholar 

  • Mischo A, Wadle A, Watzig K, Jager D, Stockert E, Santiago D, Ritter G, Regitz E, Jager E, Knuth A, Old L, Pfreundschuh M, Renner C (2003) Recombinant antigen expression on yeast surface (RAYS) for the detection of serological immune responses in cancer patients. Cancer Immun 3:5

    PubMed  Google Scholar 

  • Rubio JP, Thompson JK, Cowman AF (1996) The var genes of Plasmodium falciparum are located in the subtelomeric region of most chromosomes. EMBO J 15:4069–4077

    CAS  PubMed  Google Scholar 

  • Scherf A, Hernandez-Rivas R, Buffet P, Bottius E, Benatar C, Pouvelle B, Gysin J, Lanzer M (1998) Antigenic variation in malaria: in situ switching, relaxed and mutually exclusive transcription of var genes during intra-erythrocytic development in Plasmodium falciparum. EMBO J 17:5418–5426

    CAS  PubMed  Google Scholar 

  • Shen ZM, Wang L, Pike J, Jue CK, Zhao H, Nobel H de, Kurjan J, Lipke PN (2001) Delineation of functional regions within the subunits of the Saccharomyces cerevisiae cell adhesion molecule a-agglutinin. J Biol Chem 276:15768–15775

    Article  CAS  PubMed  Google Scholar 

  • Sim BK, Chitnis CE, Wasniowska K, Hadley TJ, Miller LH (1994) Receptor and ligand domains for invasion of erythrocytes by Plasmodium falciparum. Science 264:1941–1944

    CAS  PubMed  Google Scholar 

  • Smith JD, Chitnis CE, Craig AG, Roberts DJ, Hudson-Taylor DE, Peterson DS, Pinches R, Newbold CI, Miller LH (1995) Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell 82:101–110

    CAS  PubMed  Google Scholar 

  • Su XZ, Heatwole VM, Wertheimer SP, Guinet F, Herrfeldt JA, Peterson DS, Ravetch JA, Wellems TE (1995) The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell 82:89–100

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the European Commission (BIOMALPAR). We thank Dr. Scherf for providing us with DBL3γ specific antisera and thank Elisabeth Wilken, Kathrin Steigleder and Nicole Klatt for technical support. All experiments were performed in agreement with current German laws.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Lanzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schieck, E., Sanchez, C.P. & Lanzer, M. Targeting a DBL3γ domain of the Plasmodium falciparum erythrocyte membrane protein 1 to the surface of Saccharomyces cerevisiae . Parasitol Res 93, 318–321 (2004). https://doi.org/10.1007/s00436-004-1140-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-004-1140-6

Keywords

Navigation