Skip to main content
Log in

Molecular profiles of Trypanosoma brucei, T. evansi and T. equiperdum stocks revealed by the random amplified polymorphic DNA method

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

A total of 20 random primers (10-mers) were used to amplify RAPD markers from the genomic DNA of four Trypanosoma brucei stocks from East and West Africa, four T. evansi stocks from Africa, Asia and South America and one T. equiperdum stock from Asia. Between 65 and 88 reproducible fragments ranging from 0.25 to 2.15 kb were generated from these stocks depending on the stock/primer combination. The similarity coefficient (SC) among the stocks of T. brucei from Kenya, Nigeria, Tanzania and Zambia ranged from 62.9% to 74.0% (average: 67.6%). The SC among the stocks of T. evansi from Kenya, China and Brazil was 76.4%–95.5% (average: 86.4%), while the SC between T. evansi stock from China and Brazil was 95.5%. For T. evansi and T. equiperdum, the SC among the stocks ranged from 81.2% to 94.4% (average: 87.6%). As for the SC among the stocks of T. brucei and T. evansi, it was found to be from 54.7% to 80.3% (average: 68.0%) and the SC among stocks of T. brucei and T. equiperdum was from 59.4% to 76.9% (average: 68.1%). Our results indicate that the stocks of T. evansi from China and from Brazil are more closely related to the stock of T. equiperdum from China than to the stocks of T. evansi isolated from Kenya and to the stocks of T. brucei. In addition, our results further support the hypothesis that T. evansi stocks from China and Brazil could have arisen from a single lineage. The possible evolution of T. evansi and T. equiperdum is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Artama WT, Agey MW, Donelson JE (1992) DNA comparison of Trypanosoma evansi from Indonesia and Trypanosoma brucei spp. Parasitology104:64–74

  • Barral V, This P, Imbert-Establet D, Combes C, Delseny M (1993) Genetic variability and evolution of Schistosoma genome analyzed by using random amplified polymorphic DNA markers. Mol Biochem Parasitol 59:211–222

    Article  CAS  PubMed  Google Scholar 

  • Basagoudanavar SH, Rao JR, Singh RK, Butchaiah G (1999) Random amplification of polymorphic DNA fingerprinting of Trypanosoma evansi. Vet Res Commun 23:249–255

    Article  CAS  PubMed  Google Scholar 

  • Biteau N, Bringaud F, Gibson W, Truc P, Baltz T (2000) Characterization of Trypanozoon isolates using a repeated coding sequence and microsatellite markers. Mol Biochem Parasitol 105:185–201

    Article  CAS  PubMed  Google Scholar 

  • Boid R (1988) Isoenzyme characterisation of 15 stocks Trypanosoma evansi isolated from camels in the Sudan. Trop Med Parasitol 39:45–50

    CAS  PubMed  Google Scholar 

  • Borst P, Fase-Fowler F, Gibson WC (1987) Kinetoplast DNA of Trypanosoma evansi. Mol Biochem Parasitol 23:31–38

    Article  CAS  PubMed  Google Scholar 

  • Brisse S, Barnabé C, Tibayrenc M (2000) Identification of six Trypanosoma cruzi phylogenetic lineages by random amplified polymorphic DNA and multilocus enzyme electrophoresis. Int J Parasitol 30:35–44

    Article  CAS  PubMed  Google Scholar 

  • Brun R, Hecker H, Lun ZR (1998) Trypanosoma evansi and T. equiperdum: distribution, biology, treatment and phylogenetic relationship. Vet Parasitol 79:95–107

    Article  CAS  PubMed  Google Scholar 

  • Clare F (2003) Characterization of pathogenic trypanosomes. How does Tryapnosoma equiperdum fit into the Trypanozoon group? PhD thesis, Katholieke Universiteit, Leuven

  • Clare F, Agboo EEC, Radwanska M, Baltz T, De Waal DT, Goddeeris BM, Buscher P (2003) How does Trypanosoma equiperdum fit into the Trypanozoon group? A cluster analysis by random amplified polymorphic DNA (RAPD) and the multiplex-endonuclease genotyping approach. Parasitology 126:425–431

    Article  PubMed  Google Scholar 

  • Frasch ACC, Hajduk SL, Hoeijmakers JHJ, Borst P, Brunel F, Davison J (1980) The kinetoplast DNA of Trypanosoma equiperdum. Biochem Biophys Acta 607:397–410

    Article  CAS  PubMed  Google Scholar 

  • Gibson WC, Marshall TF de C, Godfrey DG (1980) Numerical analysis of enzyme polymorphism: a new approach to the epidemiology and taxonomy of trypanosomes of the subgenus Trypanozoon. Adv Parasitol 18:175–246

    CAS  PubMed  Google Scholar 

  • Gibson WC, Wilson AJ, Moloo SK (1983) Characterization of Trypanosoma (Trypanozoon) evansi from camels in Kenya using isoenzyme electrophoresis. Res Vet Sci 34:114–118

    CAS  PubMed  Google Scholar 

  • Hedrick P (1992) Shooting the RAPDs. Nature 355:679–680

    Article  Google Scholar 

  • Hide G (1997) The molecular epidemiology of Trypanosomatids. In: Hide G, Mottram JC, Coombs GH, Holmes PH (eds) Trypanosomiasis and leishmaniasis. CAB International, Wallingford, pp 289–303

  • Hoare CA (1972) The trypanosomes of mammals. Blackwell, Oxford

  • Kaminsky R, Schmid C, Lun ZR (1997) Susceptibility of dyskinetoplastic Trypanosoma evansi and T. equiperdum to isometamidium chloride. Parasitol Res 83:816–818

    Article  CAS  PubMed  Google Scholar 

  • Kanmogne GD, Stevens, JR, Asonganyi T, Gibson WC (1996) Genetic heterogeneity in the Trypanosoma brucei gambiense genome analysed by random amplification of polymorphic DNA. Parasitol Res 82:535–541

    Article  CAS  PubMed  Google Scholar 

  • Lanham SM, Godfrey DG (1970) Isolation of salivarian trypanosomes from man and other mammals using DEAE-cellulose. Exp Parasitol 28:521–534

    PubMed  Google Scholar 

  • Luckins AG (1988) Trypanosoma evansi in Asia. Parasitol Today 4:137–142

    Article  Google Scholar 

  • Lun ZR, Lu LX (1994) Detection of kinetoplast DNA from Trypanosoma evansi by PCR. Chin Sci Bull 39:1310–1314

    CAS  Google Scholar 

  • Lun ZR, Desser SS (1995) Is the broad range of host geographical distribution of Trypanosoma evansi attributable to the loss of maxicircle kinetoplast DNA? Parasitol Today 11:131–133

    Article  Google Scholar 

  • Lun ZR, Desser SS (1996) Analysis of isolates within species of anuran trypanosomes using random amplified polymorphic DNA. Parasitol Res 82:22–27

    Article  CAS  PubMed  Google Scholar 

  • Lun ZR, Allinghan R, Brun R, Lanham SM (1992a) The isoenzyme characteristics of Trypanosoma evansi and Trypanosoma equiperdum isolated from domestic stocks in China. Ann Trop Med Parasitol 86:333–340

    CAS  PubMed  Google Scholar 

  • Lun ZR, Brun R, Gibson W (1992b) Kinetoplast DNA and molecular karyotype of Trypanosoma evansi and Trypanosoma equiperdum from China. Mol Biochem Parasitol 50:189–196

    Article  CAS  PubMed  Google Scholar 

  • Lun ZR, Fang Y, Wang CJ, Brun R (1993) Trypanosomiasis of domestic animals in China. Parasitol Today 9:41–45

    Article  Google Scholar 

  • Mathieu-Daude F, Stevens JR, Welsh J, Tibayrenc M, McClelland M (1995) Genetic diversity and population structure of Trypanosoma brucei: clonality versus sexuality. Mol Biochem Parasitol 72:89–101

    Article  CAS  PubMed  Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variant in term of restriction endonuclease. Proc Nat Acad Sci U S A 76:5269–5273

    CAS  Google Scholar 

  • Njagu Z, Mihok S, Kokwaro E, Verloo D (1999) Isolation of Trypanosoma brucei from the monitor lizard (Varanus niloticus) in an endemic focus of Rhodesian sleeping sickness in Kenya. Acta Trop 72:137–148

    Article  CAS  PubMed  Google Scholar 

  • Ou YC, Baltz T (1991) Kinetoplast DNA analysis of four Trypanosoma evansi strains. Mol Biochem Parasitol 46:97–102

    Article  CAS  PubMed  Google Scholar 

  • Reid SA (2002) Trypanosoma evansi control and containment in Australasia. Trends Parasitol 18:219–224

    Article  PubMed  Google Scholar 

  • Shu HH, Stuart K (1994) Mitochondrial transcripts are processed but are not edited normally in Trypanosoma equiperdum (ATCC 30019) which has kDNA sequence deletion and duplication. Nucleic Acids Res 22:1696–1670

    CAS  PubMed  Google Scholar 

  • Songa EB, Paindavoin P, Wittouck E, Viseshakul N, Muldermans S, Steinert M, Hamers R (1990) Evidence for kinetoplast and nuclear DNA homogeneity in Trypanosoma evansi isolates. Mol Biochem Parasitol 43:167–180

    Article  CAS  PubMed  Google Scholar 

  • Steindel M, Neto ED, Pinto CJC, Grisard EC, Menezes CLP, Murta SMF, Simpson AJG, Romanha AJ (1994) Randomly amplified polymorphic DNA (RAPD) and isoenzyme analysis of Trypanosoma rangeli strains. J Eukaryot Microbiol 41:261–267

    CAS  PubMed  Google Scholar 

  • Stevens JR, Numes VLB, Lanham SM, Oshiro ET (1989) Isoenzyme characterization of Trypanosoma evansi isolated from capybaras and dogs in Brazil. Acta Trop 46:213–222

    Article  CAS  PubMed  Google Scholar 

  • Stevens JR, Noyes HA, Schofield CJ, Gibson W (2001) The molecular evolution of trypanosomatidae. Adv Parasitol 48:1–56

    CAS  PubMed  Google Scholar 

  • Truc P, Tibayrenc M (1993) Population genetics of Trypanosoma brucei in central Africa: taxonomic and epidemiological significance. Parasitology 106:137–149.

    PubMed  Google Scholar 

  • Vanácová S, Tachezy J, Kulda J, Flegr J (1997) Characterization of trichomonad species and strains by PCR fingerprinting. J Eukaryot Microbiol 44:545–552

    PubMed  Google Scholar 

  • Van Belkun A, Homan W, Limper L, Quint WGV (1993) Genotyping isolates and clones of Giardia duodenalis by polymerase chain reaction: implication for the detection genetic variation among protozoa parasite species. Mol Biochem Parasitol 61:69–78

    Article  PubMed  Google Scholar 

  • Van der Ploeg LHT, Bernards A, Rijsewijk F, Borst P (1982) Characterisation of the DNA duplication-transposition that control the expression of two genes for variant surface glycoproteins in Trypanosoma brucei. Nucleic Acids Res 10:593–609

    PubMed  Google Scholar 

  • Ventura RM, Takata CSA, Silva RAMS, Nues VL, Takeda, GF, Teixeira MMG (2000) Molecular and morphological studies of Brazilian Trypanosoma evansi stocks: the total absence of kDNA in trypanosomes from both laboratory stocks and naturally infected domestic and wild mammals. J Parasitol 86:1289–1298

    CAS  PubMed  Google Scholar 

  • Ventura RM, Takeda GF, Silva RAMS, Nunes VLB, Buck GA, Teixeira MMG (2002) Genetic relatedness among Trypanosoma evansi stocks by random amplification of polymorphic DNA and evaluation of a synapomorphic DNA fragment for species-specific diagnosis. Int J Parasitol 32:53–63

    Article  CAS  PubMed  Google Scholar 

  • Waitumbi JN, Murphy NB (1993) Inter- and intraspecies differentiation of trypanosomes by genomic fingerprinting with arbitrary primers. Mol Biochem Parasitol 58:181–186

    Article  PubMed  Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers useful as genetic markers. Nucleic Acid Res 18:6531–6535

    CAS  PubMed  Google Scholar 

  • Zhang ZQ, Baltz T (1994) Identification of Trypanosoma evansi, Trypanosoma equiperdum and Trypanosoma brucei using repetitive DNA probes. Vet Parasitol 53:197–208

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. A. Luckins for a critical review of the manuscript and Dr. W. Gibson for providing the DNA of T. evansi from Brazil and Africa. This work was supported by grants from the Zhongshan University( no. 3253280) and the National Natural Science Foundation of China (no. 30170124).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-Rong Lun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lun, ZR., Li, AX., Chen, XG. et al. Molecular profiles of Trypanosoma brucei, T. evansi and T. equiperdum stocks revealed by the random amplified polymorphic DNA method. Parasitol Res 92, 335–340 (2004). https://doi.org/10.1007/s00436-003-1054-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-003-1054-8

Keywords

Navigation