Skip to main content
Log in

Selection and reversal of Plasmodium berghei resistance in the mouse model following repeated high doses of artemether

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Artemether, a derivative of artemisinin, is effectively used for the treatment of malaria without any clinically relevant resistance to date. Artemether has also been developed as an antischistosomal agent, exhibiting highest activity against immature parasites. Here, we employ a rodent model and investigate whether the proposed artemether treatment schedule to prevent schistosome-attributable morbidity might select for Plasmodium berghei resistance. Mice infected with an ANKA strain of P. berghei were treated with artemether at either 47 mg/kg or 300 mg/kg. Once every 7–10 days, parasitized erythrocytes were passed to the next group of mice, receiving the same doses of artemether, for 50 passages. Resistance development was slow but increased considerably over the final ten passages. At the higher dose of artemether, the indices of resistance were 4.8 and 8.8 after 40 and 50 passages, respectively. Importantly, resistance was unstable, since sensitivity reverted to near-normal after five passages without drug pressure. A moderate index of P. berghei resistance and no apparent reversibility was found in comparative experiments employing pyronaridine. In conclusion, the pace of resistance development in P. berghei to repeated high doses of artemether is slow and reversible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Breman JG (2001) The ears of the hippopotamus: manifestations, determinants, and estimates of the malaria burden. Am J Trop Med Hyg 64 [Suppl]:1–11

  • Chen YD, Lin BY, Zhang JX (2002) Study on introducing an artemisinin-resistant line of Plasmodium berghei. Chin J Parasitol Parasite Dis 20:37–38

    CAS  Google Scholar 

  • Cheng LF, Lu LL, Wu LL (1988) Development of artemether-resistant of line of Plasmodium berghei (in Chinese with English abstract). Acta Pharmacol Sin 9:352–355

    CAS  Google Scholar 

  • Dayan AD (1998) Neurotoxicity and artemisinin compounds: do the observations in animals justify limitation of clinical use? Med Trop 58 [Suppl 3]:32–37

  • Dutta GP, Puri SK, Awasthi A, Mishra M, Tripathi R (2000) Pyronaridine: an effective antimalarial against multidrug-resistant malaria. Life Sci 67:759–763

    Article  CAS  PubMed  Google Scholar 

  • Genovese RF, Newman DB, Brewer TG (2000) Behavioral and neural toxicity of the artemisinin antimalarial, arteether, but not artesunate and artelinate, in rats. Pharmacol Biochem Behav 67:37–44

    Article  CAS  PubMed  Google Scholar 

  • Hastings IM, Bray PG, Ward SA (2002a) A requiem for chloroquine. Science 298:74–75

    Article  CAS  PubMed  Google Scholar 

  • Hastings IM, Watkins WM, White NJ (2002b) The evolution of drug-resistant malaria: the role of drug elimination half-life. Philos Trans R Soc Lond B Biol Sci 357:505–519

    Article  CAS  PubMed  Google Scholar 

  • Haynes RK (2001) Artemisinin and derivatives: the future for malaria treatment? Curr Opin Infect Dis 14:719–726

    Google Scholar 

  • Hyde JE (2002) Mechanisms of resistance of Plasmodium falciparum to antimalarial drugs. Microbe Infect 4:165–174

    Article  CAS  Google Scholar 

  • Inselburg J (1985) Induction and isolation of artemisinine-resistant mutants of Plasmodium falciparum. Am J Trop Med Hyg 34:417–418

    CAS  PubMed  Google Scholar 

  • Ittarat W, Pickard AL, Rattanasinganchan P, Wilairatana P, Looareesuwan S, Emery K, Low J, Udomsangpetch R, Meshnick SR (2003) Recrudescence in artesunate-treated patients with falciparum malaria is dependent on parasite burden not on parasite factors. Am J Trop Med Hyg 68:147–152

    CAS  PubMed  Google Scholar 

  • Klayman DL (1985) Qinghaosu (artemisinin): an antimalarial drug from China. Science 228:1049–1055

    CAS  PubMed  Google Scholar 

  • Li CS, Du YL, Jiang Q (1986) Development of a qinghaosu-resistant line of Plasmodium berghei ANKA and N strain (in Chinese with English abstract). Acta Pharm Sin 21:811–815

    CAS  Google Scholar 

  • Li QG, Mog SR, Si YZ, Kyle DE, Gettayacamin M, Milhous WK (2002) Neurotoxicity and efficacy of arteether related to its exposure times and exposure levels in rodents. Am J Trop Med Hyg 66:516–525

    CAS  PubMed  Google Scholar 

  • Li Y, Wu YL (2003) An over four millennium story behind qinghaosu (artemisinin)—a fantastic antimalarial drug from a traditional Chinese herb. Curr Med Chem 10:2197–2230

  • Liu AR, Ren ZH (1987) Development of a line of Plasmodium berghei resistant to sodium artesunate (in Chinese with English abstract). Acta Pharmacol Sin 8:149–152

    CAS  Google Scholar 

  • Merkli B, Richle RW (1980) Studies on the resistance to single and combined antimalarials in the Plasmodium berghei mouse model. Acta Trop 37:228–231

    CAS  PubMed  Google Scholar 

  • Meshnick SR (2002) Artemisinin: mechanisms of action, resistance and toxicity. Int J Parasitol 32:1655–1660

    Article  CAS  PubMed  Google Scholar 

  • N’Goran EK, Utzinger J, Gnaka HN, Yapi A, N’Guessan NA, Kigbafori SD, Lengeler C, Chollet J, Xiao SH, Tanner M (2003) Randomized, double-blind, placebo-controlled trial of oral artemether for the prevention of patent Schistosoma haematobium infections. Am J Trop Med Hyg 68:24–32

    CAS  PubMed  Google Scholar 

  • Noedl H, Wernsdorfer WH, Krudsood S, Wilairatana P, Viriyavejakul P, Kollaritsch H, Wiedermann G, Looareesuwan S (2001) In vivo–in vitro model for the assessment of clinically relevant antimalarial cross-resistance. Am J Trop Med Hyg 65:696–699

    CAS  PubMed  Google Scholar 

  • Nosten F, Brasseur P (2002) Combination therapy for malaria: the way forward? Drugs 62:1315–1329

    CAS  PubMed  Google Scholar 

  • Peters W, Robinson BL (1999) The chemotherapy of rodent malaria. LVI. Studies on the development of resistance to natural and synthetic endoperoxides. Ann Trop Med Parasitol 93:325–329

    Article  CAS  PubMed  Google Scholar 

  • Peters W, Portus JH, Robinson BL (1975) The chemotherapy of rodent malaria, XXII. The value of drug-resistant strains of P. berghei in screening for blood schizontocidal activity. Ann Trop Med Parasitol 69:155–171

    CAS  PubMed  Google Scholar 

  • Price RN (2000) Artemisinin drugs: novel antimalarial agents. Expert Opin Investig Drugs 9:1815–1827

    CAS  PubMed  Google Scholar 

  • Ridley RG (2002) Medical need, scientific opportunity and the drive for antimalarial drugs. Nature 415:686–693

    Article  CAS  PubMed  Google Scholar 

  • Utzinger J, Xiao SH, N’Goran EK, Bergquist R, Tanner M (2001) The potential of artemether for the control of schistosomiasis. Int J Parasitol 31:1549–1562

    Article  CAS  PubMed  Google Scholar 

  • Utzinger J, Bergquist R, Xiao SH, Singer BH, Tanner M (2003a) Sustainable schistosomiasis control—the way forward. Lancet 362:1932–1934

  • Utzinger J, Keiser J, Xiao SH, Tanner M, Singer BH (2003b) Combination chemotherapy of schistosomiasis in laboratory studies and clinical trials. Antimicrob Agents Chemother 47:1487–1495

    Article  CAS  PubMed  Google Scholar 

  • Walker DJ, Pitsch JL, Peng MM, Robinson BL, Peters W, Bhisutthibhan J, Meshnick SR (2000) Mechanisms of artemisinin resistance in the rodent malaria pathogen Plasmodium yoelii. Antimicrob Agents Chemother 44:344–347

    Article  CAS  PubMed  Google Scholar 

  • Wellems TE, Plowe CV (2001) Chloroquine-resistant malaria. J Infect Dis 184:770–776

    Article  CAS  PubMed  Google Scholar 

  • White N (1999) Antimalarial drug resistance and combination chemotherapy. Philos Trans R Soc Lond B Biol Sci 354:739–749

    Article  CAS  PubMed  Google Scholar 

  • White NJ, Pongtavornpinyo W (2003) The de novo selection of drug-resistant malaria parasites. Proc R Soc Lond B Biol Sci 270:545–554

    Article  CAS  PubMed  Google Scholar 

  • Wongsrichanalai C, Pickard AL, Wernsdorfer WH, Meshnick SR (2002) Epidemiology of drug-resistant malaria. Lancet Infect Dis 2:209–218

    Article  CAS  PubMed  Google Scholar 

  • Xiao SH, Hotez PJ, Tanner M (2000) Artemether, an effective new agent for chemoprophylaxis against schistosomiasis in China: its in vivo effect on the biochemical metabolism of the Asian schistosome. Southeast Asian J Trop Med Public Health 31:724–732

    PubMed  Google Scholar 

  • Xiao SH, Chollet J, Utzinger J, Matile H, Mei JY, Tanner M (2001) Artemether administered together with haemin damages schistosomes in vitro. Trans R Soc Trop Med Hyg 95:67–71

    Google Scholar 

  • Xiao SH, Tanner M, N’Goran EK, Utzinger J, Chollet J, Bergquist R, Chen MG, Zheng J (2002a) Recent investigations of artemether, a novel agent for the prevention of schistosomiasis japonica, mansoni and haematobia. Acta Trop 82:175–181

    Article  CAS  PubMed  Google Scholar 

  • Xiao SH, Yang YQ, You QQ, Utzinger J, Guo HF, Jiao PY, Mei JY, Guo J, Bergquist R, Tanner M (2002b) Potential long-term toxicity of repeated orally administered doses of artemether in rats. Am J Trop Med Hyg 66:30–34

    CAS  PubMed  Google Scholar 

  • Xiao SH, You JQ, Gao HF, Mei JY, Jiao PY, Chollet J, Tanner M, Utzinger J (2002c) Schistosoma japonicum: effect of artemether on glutathione S-transferase and superoxide dismutase. Exp Parasitol 102:38–45

    Article  CAS  PubMed  Google Scholar 

  • Xiao SH, Wu YL, Tanner M, Wu WM, Utzinger J, Mei JY, Scorneaux B, Chollet J, Zhai Z (2003) Schistosoma japonicum: in vitro effects of artemether combined with haemin depend on cultivation media and appraisal of artemether products appearing in the media. Parasitol Res 89:459–466

    PubMed  Google Scholar 

Download references

Acknowledgements

This investigation received financial support from the Ninth Five-Year Key Research Program of China. J.U. is grateful to the Center for Health and Wellbeing at Princeton University and the Swiss Tropical Institute for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Tanner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, SH., Yao, JM., Utzinger, J. et al. Selection and reversal of Plasmodium berghei resistance in the mouse model following repeated high doses of artemether. Parasitol Res 92, 215–219 (2004). https://doi.org/10.1007/s00436-003-1029-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-003-1029-9

Keywords

Navigation