Skip to main content
Log in

Tritrichomonas foetus pseudocysts adhere to vaginal epithelial cells in a contact-dependent manner

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Tritrichomonas foetus is a parasitic protist of the urogenital tract of cattle. It presents the trophozoite stage, a motile elongated form that constitutes most of the cells in a normal population, and a pseudocyst stage, an immotile rounded form that appears under unfavourable environmental conditions. In the present report pseudocysts were studied in natural conditions and after induction by chemicals or cycles of cooling and warming of cultures. The capacity of T. foetus to adhere to vaginal epithelial cells (VECs) was compared for both trophozoite and pseudocyst forms. By the use of video-enhanced-contrast microscopy, scanning and transmission electron microscopy, and immunofluorescence microscopy techniques, we present evidence that: (1) T. foetus easily internalizes the flagella and forms pseudocysts under several unfavourable conditions; (2) T. foetus in both pseudocyst and trophozoite forms is able to adhere to VECs; (3) the adhesion rate is higher for pseudocysts than for trophozoites; (4) the adhesin Tf190 is expressed in both forms during interaction; (5) the adhesion process of pseudocysts seems to occur in a contact-dependent manner. Thus, we propose that the pseudocyst stage is not a degenerative form, but a functional life form that is able to interact with and firmly adhere to VECs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alderete JF, Garza GE (1985) Specific nature of Trichomonas vaginalis parasitism of host cell surfaces. Infect Immun 50:701–708

    CAS  PubMed  Google Scholar 

  • Alderete JF, Garza GE (1988) Identification and properties of Trichomonas vaginalis proteins involved in cytoadherence. Infect Immun 56:28–33

    CAS  PubMed  Google Scholar 

  • Alderete JF, Pearlman E (1984) Pathogenic Trichomonas vaginalis cytotoxicity to cell culture monolayers. Br J Vener Dis 60:99–105

    CAS  PubMed  Google Scholar 

  • Alderete JF, Kasmala L, Metcalfe E, Garza GE (1986) Phenotypic variation and diversity among Trichomonas vaginalis isolates and correlation of phenotype with trichomonal virulence determinants. Infect Immun 53:285–293

    CAS  PubMed  Google Scholar 

  • Alderete JF, Provenzano D, Lehker MW (1995) Iron mediates Trichomonas vaginalis resistance to complement lysis. Microb Pathog 19:93–103

    Article  CAS  PubMed  Google Scholar 

  • Alderete JF, Benchimol M, Lehker MW, Crouch ML (2002) The complex fibronectin— Trichomonas vaginalis interactions and Trichomonosis. Parasitol Int 51:285–292

    Article  CAS  PubMed  Google Scholar 

  • Arroyo R, Alderete JF (1989) Trichomonas vaginalis surface proteinase activity is necessary for parasite adherence to epithelial cells. Infect Immun 57:2991–2997

    CAS  PubMed  Google Scholar 

  • Arroyo R, Engbring J, Alderete JF (1992) Molecular basis of host epithelial cell recognition by Trichomonas vaginalis. Mol Microbiol 6:853–862

    CAS  PubMed  Google Scholar 

  • Babal P, Russel LC (1999) Sialic acid-specific lectin-mediated adhesion of Tritrichomonas foetus and Tritrichomonas mobilensis. J Parasitol 85:33–40

    CAS  PubMed  Google Scholar 

  • Babal P, Pindak FF, Russel LC, Gardner WA Jr (1999) Sialic acid-specific lectin from Tritrichomonas foetus. Biochim Biophys Acta 1248:106–116

    Google Scholar 

  • Babior BM (1984) Oxidants from phagocytes: agents of defense and destruction. Blood 64:959–966

    CAS  PubMed  Google Scholar 

  • Benchimol M, Bernardino MV (2002) Ultrastructural localization of glycoconjugates in Tritrichomonas foetus. Parasitol Res 88:134–143

    Article  PubMed  Google Scholar 

  • Bishop A (1935) Observations upon a “ Trichomonas ” from pond water. Parasitology 27:246–256

    Google Scholar 

  • Bishop A (1939) A note upon the sistematic position of Trichomonas keilini (Bishop, 1935). Parasitology 31:469–472

    Google Scholar 

  • Boggild AK, Sundermann CA, Estridge BH (2002) Localization of post-translationally modified alpha-tubulin and pseudocyst formation in tritrichomonads. Parasitol Res 88:468–474

    Article  PubMed  Google Scholar 

  • Bonilha VL, Ciavaglia MC, De Souza W, Silva-Filho FC (1995) The envolvement of terminal carbohydrates of the mammalian cell surface in the cytoadhesion of trichomonads. Parasitol Res 81:121–126

    CAS  PubMed  Google Scholar 

  • Boris S, Barbes C (2000) Role played by lactobacilli in controlling the population of vaginal pathogens. Microbes Infect 2:543–546

    Article  CAS  PubMed  Google Scholar 

  • Brugerolle G (1973) Sur l’existence de vrais kystes ches les Trichomonadines intestinalis. Ultrastructure des kystes de Trichomitus batrachorum Perty 1852, Trichomitus sanguisugae Alexeieff 1911, et Monocercomonas tipulae Mackinnon 1910. C R Acad Sci Paris Ser D 277:2193–2196

    Google Scholar 

  • Burgess DE, McDonald CM (1992) Analysis of adhesion and cytotoxicity of Tritrichomonas foetus to mammalian cells by use of monoclonal antibodies. Infect Immun 60:4253–4259

    CAS  PubMed  Google Scholar 

  • Burgess DE, Knoblock KF, Daugherty T, Robertson NP (1990) Cytotoxic and hemolytic effects of Tritrichomonas foetus on mammalian cells. Infect Immun 58:3627–3632

    CAS  PubMed  Google Scholar 

  • Capuccinelli P, Varesio L (1975) The effect of cytochalasin B, colchicine and vinblastine on the adhesion of Trichomonas vaginalis to glass surfaces. Int J Parasitol 5:57–61

    Article  PubMed  Google Scholar 

  • Cappuccinelli P, Cagliani I, Cavallo G (1975) Involvement of a surface concanavalin A-binding glycoprotein in the adhesion of Trichomonas vaginalis to substrates. Experientia 31:1157–1159

    CAS  PubMed  Google Scholar 

  • Corbeil LB, Hodgson JL, Jones DW, Corbeil RR, Widders PR, Stephens LR (1989) Adherence of Tritrichomonas foetus to bovine vaginal epithelial cells. Infect Immun 57:2158–2165

    CAS  PubMed  Google Scholar 

  • Crouch ML, Alderete JF (1999) Trichomonas vaginalis interactions with fibronectin and laminin. Microbiology 145:2835–2843

    CAS  PubMed  Google Scholar 

  • Da Silva NS, Dias Filho BP, De Souza W (1996) Structural changes at the site of Tritrichomonas foetus -erythrocyte interaction. Cell Struct Funct 21:245–250

    PubMed  Google Scholar 

  • Da Silva NS, Dias Filho BP, De Souza W (1999) Identification and localization of an adhesin on the surface of Tritrichomonas foetus. Parasitol Res 85:984–992

    Article  PubMed  Google Scholar 

  • Diamond LS (1957) The establishment of various trichomonads of animals and man in axenic cultures. J Parasitol 43:488–490

    CAS  Google Scholar 

  • Engbring JA, O’Brien JL, Alderete JF (1996) Trichomonas vaginalis adhesin proteins display molecular mimicry to metabolic enzymes. Adv Exp Med Biol 408:207–233

    CAS  PubMed  Google Scholar 

  • Farmer MA (1993) Ultrastructure of Ditrichomonas honigbergii n. g., n. sp. (Parabasalia) and its relationships to amitochondrial protests. J Eukaryot Microbiol 40:619–626

    Google Scholar 

  • Friedhoff KT, Kuhnigk C, Müller I (1991) Experimental infections in chicken with Chilomastix gallinarum, Tetratrichomonas gallinarum , and Tritrichomonas eberthi. Parasitol Res 77:329–334

    CAS  PubMed  Google Scholar 

  • Furtado MB, Benchimol M (1998) Observation of membrane fusion on the interaction of Trichomonas vaginalis with human vaginal epithelial cells. Parasitol Res 84:213–220

    Article  CAS  PubMed  Google Scholar 

  • Gadasi H, Kessler E (1983) Correlation of virulence and collagenolytic activity in Entamoeba histolytica. Infect Immun 39:528–531

    CAS  PubMed  Google Scholar 

  • González-Robles A, Lazaro-Haller A, Espinosa-Castellano M, Anaya-Velazquez F, Martinez-Palomo A (1995) Trichomonas vaginalis: ultrastructural bases of the cytophatic effect. J Eukaryot Microbiol 42:641–651

    PubMed  Google Scholar 

  • Granger BL, Warwood SJ, Benchimol M, De Souza W (2000) Transient invagination of flagella by Tritrichomonas foetus. Parasitol Res 86:699–709

    CAS  PubMed  Google Scholar 

  • Gwéléssiany J (1929) Sur lénkystement chez le Tricomonas du rat. Arch Zool Exp Gen 69:64–68

    Google Scholar 

  • Honigberg BM (1963) Evolutionary and systematic relationships in the flagellate Order Trichomonadida Kirby. J Protozool 10:20–63

    CAS  Google Scholar 

  • Honigberg BM (1978) Trichomonads of veterinary importance. In: Krier JP (ed) Parasitic protozoa, vol 2. Academic Press, New York, pp 164–275

  • Krieger JN (1990) Trichomoniasis. In: Warren KS, Mahmoud AAF (eds) Tropical and Geographical Medicine. McGraw-Hill, New York, pp 358–365

  • Krieger JN, Ravdin JI, Rein MF (1985) Contact-dependent cytopathogenic mechanisms of Trichomonas vaginalis. Infect Immun 50:778–86

    CAS  PubMed  Google Scholar 

  • Lehker MW, Sweeney D (1999) Trichomonad invasion of the mucous layer requires adhesins, mucinases, and motility. Sex Transm Dis 75:231–238

    CAS  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677

    PubMed  Google Scholar 

  • Lipman NS, Lampen N, Nguyen HT (1999) Identification of pseudocysts of Tritrichomonas muris in Armenian hamsters and their transmission to mice. Lab Anim Sci 49:313–315

    CAS  PubMed  Google Scholar 

  • Mariante RM, Guimarães CA, Linden R, Benchimol M (2003) Hydrogen peroxide induces caspase activation and programmed cell death in the amitochondrial Tritrichomonas foetus. Histochem Cell Biol 120:129–141

    Article  PubMed  Google Scholar 

  • Mattern CF, Daniel WA (1980) Tritrichomonas muris in the hamster: pseudocysts and the infection of newborn. J Protozool 27:435–439

    CAS  PubMed  Google Scholar 

  • Mattern CF, Honigberg BM, Daniel WA (1973) Fine-structural changes associated with pseudocyst formation in Trichomitus batrachorum. J Protozool 20:222–229

    CAS  PubMed  Google Scholar 

  • McLaughlin J, Faubert G (1977) Partial purification and some properties of a neutral sulfhydryl and an acid proteinase from Entamoeba histolytica. Can J Microbiol 23:420–425

    CAS  PubMed  Google Scholar 

  • Mendoza-Lopez MR, Becerril-Garcia C, Fattel-Facenda LV, Avila-Gonzalez L, Ruiz-Tachiquin ME, Ortega-Lopez J, Arroyo R (2000) CP-30, a cysteine proteinase involved in Trichomonas vaginalis cytoadherence. Infect Immun 68:4907–4912

    Article  CAS  PubMed  Google Scholar 

  • Mirhaghani A, Warton A (1998) Involvement of Trichomonas vaginalis surface-associated glycoconjugates in the parasite/target cell interaction. A quantitative electron microscopy study. Parasitol Res 84:374–381

    Article  CAS  PubMed  Google Scholar 

  • Newport G, Culpepper J, Agabian N (1988) Parasite heat-shock proteins. Parasitol Today 4:306–312

    CAS  Google Scholar 

  • Nielsen MH, Nielsen R (1975) Electron microscopy of Trichomonas vaginalis Donné: Interaction with vaginal epithelium in human trichomoniasis. Acta Pathol Microbiol Scand B 83:305–320

    CAS  PubMed  Google Scholar 

  • Noel C, Gerbod D, Delgado-Viscogliosi P, Fast NM, Younes AB, Chose O, Roseto A, Capron M, Viscogliosi E (2003) Morphogenesis during division and griseofulvin-induced changes of the microtubular cytoskeleton in the parasitic protist, Trichomonas vaginalis. Parasitol Res 89:487–494

    PubMed  Google Scholar 

  • Pereira-Neves A, Ribeiro KC, Benchimol M (2003) Pseudocysts in trichomonads—new insights. Protist 154:313–329

    Article  Google Scholar 

  • Pindak FF, Mora de Pindak M, Gardner WA Jr (1993) Contact-independent cytotoxicity of Trichomonas vaginalis. Genitourin Med 69:35–40

    CAS  PubMed  Google Scholar 

  • Provenzano D, Alderete JF (1995) Analysis of human immunoglobulin-degrading cysteine proteinases of Trichomonas vaginalis. Infect Immun 63:3388–3395

    CAS  PubMed  Google Scholar 

  • Ravdin JI, Croft BY, Guerrant RL (1980) Cytophatic mechanisms of Entamoeba histolytica. J Exp Med 152:377–390

    PubMed  Google Scholar 

  • Ribeiro KC, Monteiro-Leal LH, Benchimol M (2000) Contributions of the axostyle and flagella to closed mitosis in the protists Tritrichomonas foetus and Trichomonas vaginalis. J Eukaryot Microbiol 47:481–492

    CAS  PubMed  Google Scholar 

  • Root RK, Metcalf JA (1977) H2O2 release from human granulocytes during phagocytosis. Relationship to superoxide anion formation and cellular catabolism of H2O2: studies with normal and cytochalasin B-treated cells. J Clin Invest 60:1266–1279

    CAS  PubMed  Google Scholar 

  • Samuels R (1957) Studies on Tritrichomonas batrachorum. 1. The trophic organism. J Protozool 4:110–118

    Google Scholar 

  • Schliwa M, Van Blerkom J (1981) Structural interaction of cytoskeletal components. J Cell Biol 90:222–235

    CAS  PubMed  Google Scholar 

  • Sebesteny A (1979) Transmission of Spironucleus and Giardia spp. and some nonpathogenic intestinal Protozoa from infested hamsters to mice. Lab Anim 13:189–191

    CAS  PubMed  Google Scholar 

  • Shaia CI, Voyich J, Gillis SJ, Singh BN, Burgess DE (1998) Purification and expression of the Tf190 adhesin in Tritrichomonas foetus. Infect Immun 66:1100–1105

    CAS  PubMed  Google Scholar 

  • Silva-Filho FC, De Souza W (1988) The interaction of Trichomonas vaginalis and Tritrichomonas foetus with epithelial cells in vitro. Cell Struct Funct 13:301–310

    CAS  PubMed  Google Scholar 

  • Silva-Filho FC, Ortega-Lopez J, Arroyo R (1998) YIGSR is the preferential laminin-1 residing adhesion sequence for Trichomonas vaginalis. Exp Parasitol 88:240–242

    Article  CAS  PubMed  Google Scholar 

  • Stachan R, Nicol C, Kunstyr I (1984) Heterogeneity of Tritrichomonas muris pseudocysts. Protistologica 20:157-163

    Google Scholar 

  • Styrt B, Sugarman B, Mummaw N, White JC (1991) Chemorepulsion of trichomonads by products of neutrophil oxidative metabolism. J Infect Dis 163:176–179

    CAS  PubMed  Google Scholar 

  • Wantland WW (1956) Trichomonads in the golden hamster. Trans III Acad Sci 48:197–201

    Google Scholar 

  • Weiss SJ (1989) Tissue destruction by neutrophils. N Engl J Med 320:365–376

    CAS  PubMed  Google Scholar 

  • Wenrich DH (1939) The morphology of Trichomonas vaginalis. Vol Jub S Yoshida (Osaka) 2:65–76

    Google Scholar 

  • Young JD, Cohn ZA (1985) Molecular mechanisms of cytotoxicity mediated by Entamoeba histolytica: characterization of a pore-forming protein (PFP). J Cell Biochem 29:299–308

    CAS  PubMed  Google Scholar 

  • Young JD, Young TM, Lu LP, Unkeless JC, Cohn ZA (1982) Characterization of a membrane pore-forming protein from Entamoeba histolytica. J Exp Med 156:1677–1690

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Conselho Nacional de Desenvolvimento Científico e Tecnológico, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Programa de Núcleos de Excelência and Associação Universitária Santa Úrsula.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marlene Benchimol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer Mariante, R., Coutinho Lopes, L. & Benchimol, M. Tritrichomonas foetus pseudocysts adhere to vaginal epithelial cells in a contact-dependent manner. Parasitol Res 92, 303–312 (2004). https://doi.org/10.1007/s00436-003-1026-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-003-1026-z

Keywords

Navigation