Skip to main content
Log in

Morphogenesis during division and griseofulvin-induced changes of the microtubular cytoskeleton in the parasitic protist, Trichomonas vaginalis

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The behavior of microtubular structures during division was followed by immunofluorescence in Trichomonas vaginalis using an anti-α-tubulin monoclonal antibody together with nuclear staining by DAPI, allowing us to describe successive mitotic stages. In contrast to recent reports, we showed that: (1) the microtubular axostyle-pelta complex depolymerized during division, (2) the flagella were assembled during mitosis, and (3) the flagellar number was restored in each daughter kinetid before cytokinesis. Observation of griseofulvin-treated T. vaginalis cells revealed that the elongation of the mitotic spindle or paradesmosis was not the main motile force separating the daughter kinetids to opposite poles during division, suggesting the existence of other mechanisms and/or molecules involved in this morphogenetic event. Examination of treated cells re-incubated in fresh medium showed the nucleation of microtubules radiating from the perinuclear area, the origin of which is discussed. Finally, we confirm the effectiveness of griseofulvin against T. vaginalis and propose that this antifungal drug could be a promising antitrichomonal agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2A–C.
Fig. 3.

Similar content being viewed by others

References

  • Andrews JM (1925) Morphology and mitosis in Trichomonas termopsidis an intestinal flagellate of the termite, Termopsis. Biol Bull 49:69–85

    Google Scholar 

  • Batista CMC, Benchimol M, Cunha e Silva NL, De Souza W (1988) Localization of acetylated α-tubulin in Tritrichomonas foetus and Trichomonas vaginalis. Cell Struct Funct 13:445–453

    CAS  PubMed  Google Scholar 

  • Benchimol M, De Souza W (1987) Structural analysis of the cytoskeleton of Tritrichomonas foetus. J Submicrosc Cytol 19:139–147

    CAS  PubMed  Google Scholar 

  • Bishop A (1935) Observations upon a Trichomonas from pond water. Parasitology 27:246–256

    Google Scholar 

  • Brugerolle G (1975) Etude de la cryptopleuromitose et de la morphogenèse de division chez Trichomonas vaginalis et chez plusieurs genres de trichomonadines primitives. Protistologica 11:457–468

    Google Scholar 

  • Brugerolle G (1976) Cytologie ultrastructurale, systématique et évolution des Trichomonadida. Ann Stn Biol Besse-en-Chandesse 10:1–90

    Google Scholar 

  • Brugerolle G, Bricheux G, Coffe G (2000) Centrin protein and genes in Trichomonas vaginalis and close relatives. J Eukaryot Microbiol 47:129–138

    CAS  PubMed  Google Scholar 

  • Cavalier-Smith T (1998) A revised six-kingdom system of life. Biol Rev 73:203–266

    Article  CAS  Google Scholar 

  • Chaudhuri AR, Ludueňa RF (1996) Griseofulvin: a novel interaction with bovine brain tubulin. Biochem Pharmacol 51:903–909

    Article  CAS  PubMed  Google Scholar 

  • Chose O, Noël C, Gerbod D, Brenner C, Viscogliosi E, Roseto A (2002a) A form of cell death with some features resembling apoptosis in the amitochondrial unicellular organism Trichomonas vaginalis. Exp Cell Res 276:32–39

    Article  CAS  PubMed  Google Scholar 

  • Chose O, Noël C, Gerbod D, Sarde C-O, Brenner C, Viscogliosi E, Roseto A (2002b) Mort cellulaire des protistes amitochondriaux: une mort programmée? MédSci 18:808–809

  • Chu DTW, Klymkowsky MW (1989) The appearance of acetylated α-tubulin during early development and cellular differentiation in Xenopus. Dev Biol 136:104–117

    CAS  PubMed  Google Scholar 

  • Cleveland LR (1961) The centrioles of Trichomonas and their functions in cell reproduction. Arch Protistenkd 105:149–162

    Google Scholar 

  • Delgado-Viscogliosi P, Brugerolle G, Viscogliosi E (1996) Tubulin post-translational modifications in the primitive protist Trichomonas vaginalis. Cell Motil Cytoskeleton 33:288–297

    Article  CAS  PubMed  Google Scholar 

  • Diamond LS (1957) The establishment of various trichomonads of animals and man in axenic cultures. J Parasitol 43:488–490

    CAS  Google Scholar 

  • Gerbase AC, Rowley JT, Heyman DHL, Berkley SFB, Piot P (1998) Global prevalence and incidence estimates of selected curable STDs. Sex Transm Infect 74:S12-S16

    PubMed  Google Scholar 

  • Ghosh S, Frisardi M, Rogers R, Samuelson J (2001) How Giardia swim and divide. Infect Immun 69:7866–7872

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Conde E, Mena-Lopez R, Hernandez-Jauregui P, Gonzalez-Camacho M, Arroyo R (2000) Trichomonas vaginalis: chromatin and mitotic spindle during mitosis. Exp Parasitol 96:130–138.

    Article  CAS  PubMed  Google Scholar 

  • Hollande A (1972) Le déroulement de la cryptomitose et les modalités de la ségrégation des chromatides dans quelques groupes de protozoaires. I. Trichomonadinia Hollande et Carruette-Valentin J. Dinoflagellida Bütschli. Radiolaria J. Müller. Foraminiferida Zborzewski 1834. Telosporea Schaudinn. Ann Biol 11:427–466

    Google Scholar 

  • Hollande A, Carruette-Valentin J (1971) Les atractophores, l'induction du fuseau et la division cellulaire chez les Hypermastigines. Etude infrastructurale et révision systématique des Trichonymphines et des Spirotrichonymphines. Protistologica 7:5–100

    Google Scholar 

  • Hollande A, Valentin J (1968a) Infrastructure des centromères et déroulement de la pleuromitose chez les Hypermastigines. C R Acad Sci Paris 266:367–370

    Google Scholar 

  • Hollande A, Valentin J (1968b) Données critiques sur la pleuromitose et affinités entre Trichomonadines et Joeniides. C R Acad Sci Paris 267:1383–1386

    CAS  Google Scholar 

  • Honigberg BM (1951) Structure and morphogenesis of Trichomonas prowazeki Alexeieff and Trichomonas brumpti Alexeieff. Univ Calif Publ Zool 55:337–394

    Google Scholar 

  • Honigberg BM (1955) Structure and morphogenesis of two new species of Hexamastix from lizards. J Parasitol 41:1–17

    Google Scholar 

  • Honigberg BM, Brugerolle G (1990) Structure. In: Honigberg BM (ed) Trichomonads parasitic in humans. Springer, Berlin Heidelberg New York, pp 2–35

  • Hyman A, Karsenti E (1998) The role of nucleation in patterning microtubule networks. J Cell Sci 111:2077–2083

    CAS  PubMed  Google Scholar 

  • Juliano C, Martinotti MG, Cappuccinelli P (1985) In vitro effect of microtubule inhibitors on Trichomonas vaginalis. Microbiologica 8:31–42

    CAS  PubMed  Google Scholar 

  • Juliano C, Rubino S, Zicconi D, Cappuccinelli P (1986a) An immunofluorescent study of the microtubule organization in Trichomonas vaginalis using antitubulin antibodies. J Protozool 33:56–59

    CAS  PubMed  Google Scholar 

  • Juliano C, Monaco G, Rubino S, Cappuccinelli P (1986b) Inhibition of Trichomonas vaginalis replication by the microtubule stabilizer taxol. J Protozool 33:255–260

    CAS  PubMed  Google Scholar 

  • Kerridge D (1986) Mode of action of clinically important antifungal drugs. Adv Microbiol Physiol 27:4–72

    Google Scholar 

  • Kubai DF (1973) Unorthodox mitosis in Trichonympha agilis: kinetochore differentiation and chromosome movement. J Cell Sci 13:511–552

    CAS  PubMed  Google Scholar 

  • Lee JJ (1960) Hypotrichomonas acosta (Moskowitz) Gen. Nov. from reptiles. I. Structure and division. J Protozool 7:393–401

    Google Scholar 

  • Lingle WL, Salisbury JL (1997) Centrin and the cytoskeleton of the protist Holomastigotoides. Cell Motil Cytoskeleton 36:377–390

    Article  CAS  PubMed  Google Scholar 

  • McFadden GI, Schulze D, Surek B, Salisbury JL, Melkonian M (1987) Basal body reorientation mediated by a Ca2+-modulated contractile protein. J Cell Biol 105:903–912

    CAS  PubMed  Google Scholar 

  • MacRae TH (1997) Tubulin post-translational modifications. Enzymes and their mechanisms of action. Eur J Biochem 244:265–278

    CAS  PubMed  Google Scholar 

  • Reinsch S, Gönczy P (1998) Mechanisms of nuclear positioning. J Cell Sci 111:2283–2295

    CAS  PubMed  Google Scholar 

  • Ribeiro KC, Monteiro-Leal LH, Benchimol M (2000) Contributions of the axostyle and flagella to closed mitosis in the protists Tritrichomonas foetus and Trichomonas vaginalis. J Eukaryot Microbiol 47:481–492

    CAS  PubMed  Google Scholar 

  • Rosenbaum J (2000) Cytoskeleton: functions for tubulin modifications at last. Curr Biol 10:R801-R803

    Article  CAS  PubMed  Google Scholar 

  • Salisbury JL (1995) Centrin, centrosomes, and mitotic spindle poles. Curr Opin Cell Biol 7:39–45

    CAS  PubMed  Google Scholar 

  • Sasse R, Gull K (1988) Tubulin post-translational modifications and the construction of microtubular organelles in Trypanosoma brucei. J Cell Sci 90:577–588

    CAS  PubMed  Google Scholar 

  • Schiebel E, Bornens M (1995) In search of a function for centrins. Trends Cell Biol 5:197–201

    Article  CAS  Google Scholar 

  • Sloboda RD, Van Blaricom G, Creasey WA, Rosenbaum JL, Malawista SE (1982) Griseofulvin: association with tubulin and inhibition of in vitro microtubule assembly. Biochem Biophys Res Commun 105:882–888

    CAS  PubMed  Google Scholar 

  • Soltys BJ, Gupta RS (1994) Immunoelectron microscopy of Giardia lamblia cytoskeleton using antibody to acetylated α-tubulin. J Eukaryot Microbiol 41:625–632

    CAS  PubMed  Google Scholar 

  • Spang A, Courtney I, Fackler U, Matzer M, Schiebel E (1993) The calcium-binding protein cell division cycle 31 of Saccharomyces cerevisiae is a component of the half bridge of the spindle pole body. J Cell Biol 123:405–416

    CAS  PubMed  Google Scholar 

  • Viscogliosi E (1992) Cytosquelette et evolution des trichomonadines. PhD thesis, University Blaise Pascal, Clermont-Ferrand, pp 13–31

  • Viscogliosi E, Brugerolle G (1994) Cytoskeleton in trichomonads. III. Study of the morphogenesis during division by using monoclonal antibodies against cytoskeletal structures. Eur J Protistol 30:129–138

    Google Scholar 

  • Wenrich DH (1921) The structure and division of Trichomonas muris (Hartmann). J Morphol 36:119–155

    Google Scholar 

  • Zuo Y, Riley DE, Krieger JN (1999) Flagellar duplication and migration during the Trichomonas vaginalis cell cycle. J Parasitol 85:203–207

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the Centre National de la Recherche Scientifique, the Institut National de la Santé et de la Recherche Médicale, and the Institut Pasteur of Lille.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Viscogliosi.

Additional information

C. Noël, D. Gerbod and P. Delgado-Viscogliosi were equally involved in this work and should be considered as first author

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noël, C., Gerbod, D., Delgado-Viscogliosi, P. et al. Morphogenesis during division and griseofulvin-induced changes of the microtubular cytoskeleton in the parasitic protist, Trichomonas vaginalis . Parasitol Res 89, 487–494 (2003). https://doi.org/10.1007/s00436-002-0811-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-002-0811-4

Keywords

Navigation