Parasitology Research

, Volume 90, Issue 3, pp 192–202 | Cite as

Ultrastructural studies on the development of Enteromyxum scophthalmi (Myxozoa), an enteric parasite of turbot (Scophthalmus maximus L.)

  • María J. Redondo
  • María I. Quiroga
  • Oswaldo Palenzuela
  • José M. Nieto
  • Pilar Alvarez-PelliteroEmail author
Original Paper


The ultrastructure of the developmental stages of Enteromyxum scophthalmi is described. Scarce intracellular, early uninucleated stages appeared within intestinal epithelial cells whereas proliferative stages were abundant both intraepithelially and in the intestinal lumen. In the proliferative stages, food reserves were abundant in the cytoplasm of P cells and consisted mostly of carbohydrates in the intraepithelial stages and lipid inclusions in the luminal stages. Sporogenesis could occur in enveloped cells or by direct division or clustering of generative cells. The abundance, shape and size of mitochondria as well as the number and shape of their cristae were very variable in the different developmental stages. The cristae were usually tubular and sometimes plate-like, discoidal or lamellar. True flat cristae were not observed. We found elements of closed (cryptomitosis) and open mitosis as well as structures reminiscent of microtubule organising centres, hitherto not described in myxosporeans. The significance of these findings is discussed in relation to the taxonomic and phylogenetic position of the Myxozoa.


Polar Capsule Proliferative Stage Sporogenic Cell Lipid Inclusion Septate Junction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was funded by the European Union and the Spanish Government through the research grant FEDER 1FD97-0679-C02-01. Additional support was provided by Stolt Sea Farm S.A. We are grateful to the Technical Services at the Universities of Valencia and Barcelona, and to M. del Carmen Carreira Valle, School of Veterinary Medicine of Lugo (University of Santiago), for assistance in the processing of electron microscopy samples.


  1. Alvarez-Pellitero P, Molnár K, Sitjà-Bobadilla A, Székely C (2002) Comparative ultrastructure of the actinosporean stages of Myxobolus bramae and M. pseudodispar (Myxozoa). Parasitol Res 88:198–207PubMedCrossRefGoogle Scholar
  2. Anderson CL, Canning EU, Okamura B (1998) A triploblast origin for Myxozoa? Nature 392:346PubMedCrossRefGoogle Scholar
  3. Branson E, Riaza A, Alvarez-Pellitero P (1999) Myxosporean infection causing intestinal disease in farmed turbot, Scophthalmus maximus (L.) (Teleostei: Scophthalmidae). J Fish Dis 22:395–399CrossRefGoogle Scholar
  4. Canning EU, Curry A, Anderson CL, Okamura B (1999) Ultrastructure of Myxidium trachinorum sp. nov. from the gallbladder of the lesser weever fish Echiichthys vipera. Parasitol Res 85:910–919PubMedCrossRefGoogle Scholar
  5. Cavalier-Smith T (1996/1997) Amoeboflagellates and mitochondrial cristae in eukaryote evolution: megasystematics on the new protozoan subkingdoms Eozoa and Neozoa. Arch Protistenkd 147:237–258CrossRefGoogle Scholar
  6. Cavalier-Smith T, Allsopp MTEP, Chao EE, Boury-Esnault N, Vacelet J (1996). Sponge phylogeny, animal monophyly, and the origin of the nervous system: 18S rRNA evidence. Can J Zool 74:2031–2045CrossRefGoogle Scholar
  7. Corliss JO (1998) Classification of protozoa and protists: the current status. In: Coombs GH, Vickerman K, Sleigh MA, Warren A (eds) Evolutionary relationships among protozoa. Chapman and Hall, London, pp 409–447Google Scholar
  8. Cross PC, Mercer KL (1993) Cell and tissue ultrastructure. Freeman, New YorkGoogle Scholar
  9. Current WL, Janovy J (1977) Sporogeneis in Henneguya exilis infecting channel catfish-ultrastructural study. Protistologica 13:157–167Google Scholar
  10. Diamant A (1997) Fish-to-fish transmission of a marine myxosporean. Dis Aquat Org 30:99–105CrossRefGoogle Scholar
  11. Diamant A, Lom J, Dyková I (1994) Myxidium leei n. sp., a pathogenic myxosporean of cultured sea bream Sparus aurata. Dis Aquat Org 20:137–141CrossRefGoogle Scholar
  12. Dyková I, Lom J, Grupcheva G (1985) Pathogenicity and some structural features of Myxidium rhodei (Myxozoa: Myxosporea) from the kidney of the roach Rutilus rutilus. Dis Aquat Org 2:109–115CrossRefGoogle Scholar
  13. Dyková I, Lom J, Körting W (1990) Light and electron microscopic observations on the swimbladder stages of Spaherospora renicola, a parasite of carp (Cyprinus carpio). Parasitol Res 76:228–237CrossRefGoogle Scholar
  14. El-Matbouli M, Hoffmann RW, Mandok C (1995) Light and electron microscopic observations on the route of the triactinomyxon sporoplasm of Myxobolus cerebralis from epidermis into rainbow trout cartilage. J Fish Biol 46:919–935Google Scholar
  15. Feist SW (1995) Ultrastructural aspects of Myxidium gadi (Georgévitch, 1916) (Myxozoa: Myxosporea). Eur J Protistol 31:309–317CrossRefGoogle Scholar
  16. Heath IB (1980) Fungal mitoses, the significance of variations on a theme. Mycologia 72:229–250CrossRefGoogle Scholar
  17. Hülsman N, Hausman K (1994) Towards a new perspective in protozoan evolution. Eur J Protistol 30:365–371CrossRefGoogle Scholar
  18. Kent ML, Andree KB, Bartholomew JL, El-Matbouli M, Desser SS, Devlin RH, Feist SW, Hedrick RP, Hoffmann RW, Khattra J, Hallet SL, Lester RJG, Longshaw M, Palenzuela O, Siddall ME, Xiao C (2001) Recent advances in our knowledge of the Myxozoa. J Eukaryot Microbiol 48:395–413PubMedCrossRefGoogle Scholar
  19. Kim J, Kim W, Cunningham CW (1999) A new perspective on lower Metazoan relationships from 18S rDNA sequences. Mol Biol Evol 16:423–427PubMedCrossRefGoogle Scholar
  20. Kita K, Hirawake H, Takamiya S (1997) Cytochromes in the respiratory chain of helminth mitochondria. Int J Parasitol 27:617–630PubMedCrossRefGoogle Scholar
  21. Leipe DD (1996) Morphological and molecular data in protozoan systematics. Verh Dtsch Zool Ges 89:63–69Google Scholar
  22. Lom J, Dyková I (1992) Protozoan parasites of fishes. Developments in aquaculture and fisheries science, vol 26. Elsevier, AmsterdamGoogle Scholar
  23. Lom J, Dyková I (1996) Notes on the ultrastructure of two myxosporean (Myxozoa) species, Zschokkella pleomorpha and Ortholinea fluviatilis. Folia Parasitol 43:189–202Google Scholar
  24. Lom J, Dyková I (1997) Ultrastructural features of the actinosporean phase of Myxosporea (Phylum Myxozoa): a comparative study. Acta Protozool 36:83–103Google Scholar
  25. Mignot J-P (1996) The centrosomal big bang: from a unique central organelle towards a constellation of MTOCs. Biol Cell 86:81–91CrossRefGoogle Scholar
  26. Monteiro AS, Okamura B, Holland PWH (2002) Orphan worm finds a home: Buddenbrockia is a myxozoan. Mol Biol Evol 19:968–971PubMedCrossRefGoogle Scholar
  27. Morrison CM, Martell DJ, Leggiadro C, O'Neil D (1996) Ceratomyxa drepanopsettae in the gallbladder of Atlantic halibut, Hippoglossus hippoglossus, from the northwest Atlantic Ocean. Folia Parasitol 43:20–36PubMedGoogle Scholar
  28. Okamura B, Curry A, Wood TS, Canning EU (2002) Ultrastructure of Buddenbrockia identifies it as a myxozoan and verifies the bilaterian origin of the Myxozoa. Parasitology 124:215–223PubMedCrossRefGoogle Scholar
  29. Palenzuela O, Redondo MJ, Alvarez-Pellitero P (2002) Description of Enteromyxum scophthalmi gen. nov, sp. nov. (Myxozoa), an intestinal parasite of turbot (Scophthalmus maximus L.) using morphological and ribosomal RNA sequence data. Parasitology 124:369–380PubMedCrossRefGoogle Scholar
  30. Paperna I, Haetley AH, Gross RH (1987) Ultrastructural studies on the plasmodium of Myxidium giardi (Myxosporea) and its attachment to the epithelium of the urinary bladder. Int J Parasitol 17:813–819PubMedCrossRefGoogle Scholar
  31. Patterson DJ (1999) The diversity of eukaryotes. Am Nat 154 [suppl]:S96-S124Google Scholar
  32. Philippe H, Adoutte A (1996) New phylogenetic findings using molecular and ultrastructural methods: protists as an example. How far can we trust the molecular phylogeny of protist? Verh Dtsch Zool Ges 89:49–62Google Scholar
  33. Redondo MJ, Palenzuela O, Riaza A, Macías A, Alvarez-Pellitero P (2002) Experimental transmission of Enteromyxum scophthalmi (Myxozoa), an enteric parasite of turbot (Scophthalmus maximus). J Parasitol 88:482–488PubMedCrossRefGoogle Scholar
  34. Schlegel M, Lom J, Stechmann A, Bernhard D, Leipe D, Dyková I, Sogin ML (1996) Phylogenetic analysis of complete small subunit ribosomal RNA coding region of Myxidium lieberkuehni: evidence that Myxozoa are Metazoa and related to Bilateria. Arch Protistenkd 146:1–9CrossRefGoogle Scholar
  35. Seligman AM, Wasserhrug HL, Hanker JS (1966) A new staining method (OTO) for enhancing contrast of lipid droplets in osmium-tetroxide-fixed tissue osmiophilic thiocarbohydrazide (TCH). J Cell Biol 30:424–432PubMedCentralPubMedCrossRefGoogle Scholar
  36. Siddall ME, Whiting MF (1999) Long-branch abstractions. Cladistics 15:9–24 CrossRefGoogle Scholar
  37. Siddall ME, Martin DS, Bridge D, Desser SS, Cone DK (1995) The demise of a phylum of protists: phylogeny of Myxozoa and other parasitic Cnidaria. J Parasitol 81:961–967PubMedCrossRefGoogle Scholar
  38. Sitjà-Bobadilla A, Alvarez-Pellitero, P (1992) Light and electron microscopic description of Sphaerospora dicentrarchi n. sp. (Myxosporea: Sphaerosporidae) from wild and cultured sea bass, Dicentrarchus labrax L. J Protozool 39:273–281CrossRefGoogle Scholar
  39. Sitjà-Bobadilla A, Alvarez-Pellitero P (1993a) Ultrastructural and cytochemical observations on the sporogenesis of Sphaerospora testicularis (Protozoa: Myxosporea) from Mediterranean sea bass, Dicentrarchus labrax (L.). Eur J Protistol 29:219–229PubMedCrossRefGoogle Scholar
  40. Sitjà-Bobadilla A, Alvarez-Pellitero P (1993b) Zschokkella mugilis n. sp. (Myxosporea: Bivalvulida) from mullets (Teleostei: Mugilidae) of Mediterranean waters: light and electron microscopic description. J Eukaryot Microbiol 40:755–764CrossRefGoogle Scholar
  41. Sitjà-Bobadilla A, Alvarez-Pellitero P (2001) Leptotheca sparidarum n. sp. (Myxosporea: Bivalvulida), a parasite from cultured common dentex (Dentex dentex L.) and gilthead sea bream (Sparus aurata L.) (Teleostei: Sparidae). J Eukaryot Microbiol 48:627–639PubMedCrossRefGoogle Scholar
  42. Smothers JF, von Dolen CD, Smith LH, Spall RD (1994) Molecular evidence that the myxozoan protists are metazoans. Science 265:1719–1721PubMedCrossRefGoogle Scholar
  43. Taylor FJR (1999) Ultrastructure as a control for protistan molecular phylogeny. Am Nat 154 [Suppl]:S125-S136Google Scholar
  44. Thiéry JP (1967) Mise en évidence des polysaccarides sur coupes fines en microscopie électronique. J Microsc 6:987–1018Google Scholar
  45. Uspenskaya AV (1982) New data on the life cycle and biology of Myxosporidia. Arch Protistenkd 126:309–338CrossRefGoogle Scholar
  46. Vickerman K, Brugerolle G, Mignot JP (1991) Mastigophora. In: Harrison FW, Corliss JO (eds) Microscopic anatomy of invertebrates. vol 1. Protozoa. Wiley-Liss, New York, pp 13–159Google Scholar
  47. Yamamoto T, Sanders JE (1979) Light and electron microscopic observations of sporogenesis on the myxosporida, Ceratomyxa shasta (Noble, 1950). J Fish Dis 2:411–428CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • María J. Redondo
    • 1
  • María I. Quiroga
    • 2
  • Oswaldo Palenzuela
    • 1
  • José M. Nieto
    • 2
  • Pilar Alvarez-Pellitero
    • 1
    Email author
  1. 1.Instituto de Acuicultura "Torre la Sal" (CSIC)Ribera de Cabanes CastellónSpain
  2. 2.Departamento de Anatomía Patológica, Facultad de VeterinariaUniversidad de SantiagoLugoSpain

Personalised recommendations