Skip to main content

Advertisement

Log in

Killing of intraerythrocytic Plasmodium falciparum by lysosomotropic amino acid esters

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract.

Esters of amino acids are known to penetrate into cells by simple diffusion. Subsequently, they are hydrolyzed by hydrolases to release the parent amino acid. Due to the abundance of hydrolases in phagolysosomes, amino acids accumulate, there because the rate of influx and hydrolysis exceed the rate of amino acid efflux through specific carriers. The osmotic effect of this accumulation results in the disruption of the organelles. This mechanism has been demonstrated to be responsible for the killing of Leishmania amastigotes by amino acid esters. In this investigation, it is shown that all esters tested, including alcohol esters, N-acetyl esters and the esters of some dipeptides, inhibit the growth of Plasmodium falciparum in culture. Inhibition is time-dependent and, in some cases, ring-stage parasites are more sensitive than trophozoites. Similar to the findings with Leishmania, alcohol esters of Glu, Leu, Met, Phe and Trp are more toxic to Plasmodium whereas Ala, Gly, His and Ile are much less noxious. Esters caused the release of acridine orange that selectively accumulates in the phagolysosome-like food vacuole of the parasite, attesting the ostensible destruction of this organelle by osmotic lysis. The toxicity of the N-acetyl esters is probably associated in part to their ability to inhibit cytosolic proteases. Since excess of amino acids can also inhibit proteolysis, the effect of free amino acids on parasite growth was also tested. Of the 19 odd amino acids tested, only three, namely Cys, His and Trp, were found to be toxic to the parasites at millimolar concentrations and the reasons for their possible specific toxicity are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  • Alfieri SC, Zilberfarb V, Rabinovitch M (1987) Destruction of Leishmania mexicana amazonensis amastigotes by leucine methyl ester: protection by other amino acid esters. Parasitology 95:31–41

    CAS  PubMed  Google Scholar 

  • Alfieri SC, Shaw E, Zilberfarb V, Rabinovitch M (1989) Leishmania amazonensis: involvement of cysteine proteinases in the killing of isolated amastigotes by l-leucine methyl ester. Exp Parasitol 68: 423–431

    CAS  PubMed  Google Scholar 

  • Antoine JC, Jouanne C, Ryter A (1989) Megasomes as the targets of leucine methyl ester in Leishmania amazonensis amastigotes. Parasitology 99:1–9

    CAS  PubMed  Google Scholar 

  • Atamna H, Ginsburg H (1993) Origin of reactive oxygen species in erythrocytes infected with Plasmodium falciparum. Mol Biochem Parasitol 61:231–241

    CAS  PubMed  Google Scholar 

  • Blommaart PJ, Zonneveld D, Meijer AJ, Lamers WH (1993) Effects of intracellular amino acid concentrations, cyclic AMP, and dexamethasone on lysosomal proteolysis in primary cultures of perinatal rat hepatocytes. J Biol Chem 268:1610–1617

    CAS  PubMed  Google Scholar 

  • Bohley P, Seglen PO (1992) Proteases and proteolysis in the lysosome. Experientia 48:151–157

    CAS  PubMed  Google Scholar 

  • Cantoni O, Sestili P, Brandi G, Cattabeni F (1994) The l-histidine-mediated enhancement of hydrogen peroxide-induced cytotoxicity is a general response in cultured mammalian cell lines and is always associated with the formation of DNA double strand breaks. FEBS Lett 353:75–78

    Article  CAS  PubMed  Google Scholar 

  • Desjardins RS, Canfield CJ, Haynes JD. Chulay JD (1979) Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob Agents Chemother 16:710–718

    CAS  PubMed  Google Scholar 

  • Divo AA, Geary TG, Davis N, Jensen JB (1985) Nutritional requirements of Plasmodium falciparum in culture. I. Exogenously supplied dialyzable components necessary for continuous growth. J Protozool 32:59–64

    CAS  PubMed  Google Scholar 

  • Francis SE, Sullivan DJ, Goldberg DE (1997) Hemoglobin metabolism in the malaria parasite Plasmodium falciparum. Annu Rev Microbiol 51:97–123

    Article  CAS  PubMed  Google Scholar 

  • Gabay T, Ginsburg H (1993) Hemoglobin denaturation and iron release in acidified red blood cell lysate—a possible source of iron for intraerythrocytic malaria parasites. Exp Parasitol 77:261–272

    Article  CAS  PubMed  Google Scholar 

  • Gero AM, O'Sullivan WJ (1990) Purines and pyrimidines in malarial parasites. Blood Cells 16: 467–484

    CAS  PubMed  Google Scholar 

  • Ginsburg H, Kutner S, Krugliak M, Cabantchik ZI (1985) Characterization of permeation pathways appearing in the host membrane of Plasmodium falciparum infected red blood cells. Mol Biochem Parasitol 14:313–322

    CAS  PubMed  Google Scholar 

  • Ginsburg H, Nissani E, Krugliak M (1989) Alkalinization of the food vacuole of malaria parasites by quinoline drugs and alkylamines is not correlated with their antimalarial activity. Biochem Pharmacol 38:2645–2654

    Article  CAS  PubMed  Google Scholar 

  • Ginsburg H, Famin O, Zhang J, Krugliak M (1998) Inhibition of glutathione-dependent degradation of heme by chloroquine and amodiaquine as a possible basis for their antimalarial mode of action. Biochem Pharmacol 56:1305–1313

    Article  CAS  PubMed  Google Scholar 

  • Goldman R, Kaplan A (1973) Rupture of rat liver lysosomes mediated by l-amino acid esters. Biochim Biophys Acta 318:205–216

    CAS  PubMed  Google Scholar 

  • Kolakovich KA, Gluzman IY, Duffin KL, Goldberg DE (1997) Generation of hemoglobin peptides in the acidic digestive vacuole of Plasmodium falciparum implicates peptide transport in amino acid production. Mol Biochem Parasitol 87:123–135

    Article  CAS  PubMed  Google Scholar 

  • Krugliak M, Zhang J, Ginsburg H (2002) Intraerythrocytic Plasmodium falciparum utilizes only a fraction of the amino acids derived from the digestion of host cell cytosol for the biosynthesis of its proteins. Mol Biochem Parasitol 119:249–56

    Article  CAS  PubMed  Google Scholar 

  • Krungkrai SR, Suraveratum N, Rochanakij S, Krungkrai J (2001) Characterisation of carbonic anhydrase in Plasmodium falciparum. Int J Parasitol 31:661–668

    Article  CAS  PubMed  Google Scholar 

  • Kutner S, Breuer WV, Ginsburg H, Aley SB, Cabantchik ZI (1985) Characterization of permeation pathways in the plasma membrane of human erythrocytes infected with early stages of Plasmodium falciparum: association with parasite development. J Cell Physiol 125:521–527

    CAS  PubMed  Google Scholar 

  • Lambros CJ, Vanderberg JP (1979) Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol 65:418–420

    CAS  PubMed  Google Scholar 

  • Lloyd JB (1996) Metabolic efflux and influx across the lysosomal membrane. In: Lloyd JB, Mason M (eds) Biology of the lysosome. (Subcellular biochemistry, vol 27) Plenum Press, New York, pp 361–386

  • Mancini GM, Havelaar AC, Verheijen FW (2000) Lysosomal transport disorders. J Inherit Metab Dis 23:278–292

    Article  CAS  PubMed  Google Scholar 

  • Pisoni RL, Thoene JG (1991) The transport systems of mammalian lysosomes. Biochim Biophys Acta 1071:351–373

    CAS  PubMed  Google Scholar 

  • Pocker Y, Sarkanen S (1978) Oxonase and esterase activities of erythrocyte carbonic anhydrase. Biochemistry 21:110–118

    Google Scholar 

  • Rabinovitch M, Zilberfarb V, Ramazeilles C (1986) Destruction of Leishmania mexicana amazonensis amastigotes within macrophages by lysosomotropic amino acid esters. J Exp Med 163:520–535

    CAS  PubMed  Google Scholar 

  • Rabinovitch M, Zilberfarb V, Pouchelet M (1987) Leishmania mexicana: destruction of isolated amastigotes by amino acid esters. Am J Trop Med Hyg 36:288–293

    CAS  PubMed  Google Scholar 

  • Ramazeilles C, Juliano L, Chagas JR, Rabinovitch M (1990) The anti-leishmanial activity of dipeptide esters on Leishmania amazonensis amastigotes. Parasitology 100:201–207

    CAS  PubMed  Google Scholar 

  • Reeves JP (1979) Accumulation of amino acids by lysosomes incubated with amino acid methyl esters. J Biol Chem 254:8914–8921

    CAS  PubMed  Google Scholar 

  • Rosenthal PJ (1998) Proteases of malaria parasites: new targets for chemotherapy. Emerg Infect Dis 4:49–57

    CAS  PubMed  Google Scholar 

  • Rosenthal PJ, McKerrow JH, Aikawa M, Nagasawa, H, Leech JH (1988) A malarial cysteine proteinase is necessary for hemoglobin degradation by Plasmodium falciparum. J Clin Invest 82:1560–1566

    CAS  PubMed  Google Scholar 

  • Rosenthal PJ, Wollish WS, Palmer JT, Rasnick D (1991) Antimalarial effects of peptide inhibitors of a Plasmodium falciparum cysteine proteinase. J Clin Invest 88:1467–1472

    CAS  PubMed  Google Scholar 

  • Seglen PO, Gordon PB, Poli A (1980) Amino acid inhibition of the autophagic/lysosomal pathway of protein degradation in isolated rat hepatocytes. Biochim Biophys Acta 630:103–118

    CAS  PubMed  Google Scholar 

  • Sestili P, Cattabeni F, Cantoni O (1995) The l-histidine-mediated enhancement of hydrogen peroxide-induced DNA double strand breakage and cytotoxicity does not involve metabolic processes, Biochem Pharmacol 50:1823–1830

    Article  CAS  PubMed  Google Scholar 

  • Shau H, Golub SH (1985) Depletion of NK cells with the lysosomotropic agent l-leucine methyl ester and the in vitro generation of NK activity from NK precursor cells. J Immunol 134:1136–1141

    CAS  PubMed  Google Scholar 

  • Sherman IW (1979) Biochemistry of Plasmodium (malarial parasites). Microbiol Rev 43:453–495

    CAS  PubMed  Google Scholar 

  • Soszynski M, Filipiak A, Bartosz G, Gebicki JM (1996) Effect of amino acid peroxides on the erythrocyte. Free Radic Biol Med 20:45–51

    Article  CAS  PubMed  Google Scholar 

  • Tashian RE, Douglas DP, Yu YS (1964) Esterase and hydrase activity of carbonic anhydrase. I. From primate erythrocytes. Biochem Biophys Res Commun 14:256–261

    CAS  PubMed  Google Scholar 

  • Thiele DL, Lipsky PE (1985) Regulation of cellular function by products of lysosomal enzyme activity: elimination of human natural killer cells by a dipeptide methyl ester generated from l-leucine methyl ester by monocytes or polymorphonuclear leukocytes. Proc Natl Acad Sci USA 82:2468–2472

    CAS  PubMed  Google Scholar 

  • Thiele DL, Kurosaka M, Lipsky PE (1983) Phenotype of the accessory cell necessary for mitogen-stimulated T and B cell responses in human peripheral blood: delineation by its sensitivity to the lysosomotropic agent, l-leucine methyl ester. J Immunol 131:2282–2290

    CAS  PubMed  Google Scholar 

  • Yayon A, Timberg R, Friedman S, Ginsburg H (1984) Effects of chloroquine on the feeding mechanism of the intraerythrocytic human malarial parasite Plasmodium falciparum. J Protozool 31:367–372

    CAS  PubMed  Google Scholar 

  • Zarchin, S, Krugliak M, Ginsburg H (1986) Digestion of the host erythrocyte by malaria parasites is the primary target for quinoline-containing antimalarials. Biochem Pharmacol 35:2435–2442

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements.

This investigation received financial support from the UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR) and from the Israel Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hagai Ginsburg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krugliak, M., Zhang, J., Nissani, E. et al. Killing of intraerythrocytic Plasmodium falciparum by lysosomotropic amino acid esters. Parasitol Res 89, 451–458 (2003). https://doi.org/10.1007/s00436-002-0794-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-002-0794-1

Keywords

Navigation