Skip to main content
Log in

Parasite-specific trypanothione reductase as a drug target molecule

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract.

Trypanosomatids are the causative agents of African sleeping sickness, Chagas' disease, and the different manifestations of leishmaniasis. New drugs against these parasitic protozoa are urgently needed since the current drugs are unsatisfactory, in particular due to serious adverse side effects. In trypanosomes and leishmanias, the nearly ubiquitous glutathione/glutathione reductase system is replaced by trypanothione and trypanothione reductase. The essential role of trypanothione reductase in the parasite thiol metabolism and its absence from the mammalian host render the enzyme a highly attractive target molecule for a structure-based drug development against trypanosomatids. This article provides an overview on the known classes of trypanothione reductase inhibitors and their in vitro activity against parasitic protozoa. The (dis)advantages of the different types of compounds as potential drug candidates as well as modern computer-based approaches to the identification of new leads are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  • Augustyns K, Amssoms K, Yamani A, Rajan PK, Haemers A (2001) Trypanothione as a target in the design of antitrypanosomal and antileishmanial agents. Curr Pharm Des 7:1117–1141

    Article  CAS  PubMed  Google Scholar 

  • Austin SE, Khan MO, Douglas KT (1999) Rational drug design using trypanothione reductase as a target for anti-trypanosomal and anti-leishmanial drug leads. Drug Des Discov 16:5–23

    CAS  PubMed  Google Scholar 

  • Benson TJ, McKie JH, Garforth J, Borges A, Fairlamb AH, Douglas KT (1992) Rationally designed selective inhibitors of trypanothione reductase. Phenothiazines and related tricyclics as lead structures. Biochem J 286:9–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blumenstiel K, Schöneck R, Yardley V, Croft SL, Krauth-Siegel RL (1999) Nitrofuran drugs as common subversive substrates of Trypanosoma cruzi lipoamide dehydrogenase and trypanothione reductase. Biochem Pharmacol 58:1791–1799

    Article  CAS  PubMed  Google Scholar 

  • Bond CS, Zhang Y, Berriman M, Cunningham ML, Fairlamb AH, Hunter WN (1999) Crystal structure of Trypanosoma cruzi trypanothione reductase in complex with trypanothione, and the structure-based discovery of new natural product inhibitors. Struct Fold Des 7:81–89

    Article  CAS  Google Scholar 

  • Bonnet B, Soullez D, Davioud-Charvet E, Landry V, Horvath D, Sergheraert C (1997) New spermine and spermidine derivatives as potent inhibitors of Trypanosoma cruzi trypanothione reductase. Bioorg Med Chem 5:1249–1256

    Article  CAS  PubMed  Google Scholar 

  • Bonse S, Krauth-Siegel RL, Schlichting I, Lowe G (1999a) Irreversible inhibitors of T. cruzi trypanothione reductase: kinetic and crystallographic studies. In: Ghisla S, Kroneck P, Macheroux P, Sund H (eds) Flavins and Ffavoproteins 1999. Rudolf Weber Agency, Berlin, pp 895–898

  • Bonse S, Santelli-Rouvier C, Barbe J, Krauth-Siegel RL (1999b) Inhibition of Trypanosoma cruzi trypanothione reductase by acridines: kinetic studies and structure-activity relationships. J Med Chem 42:5448–5454

    Article  CAS  PubMed  Google Scholar 

  • Bonse S, Richards JM, Ross SA, Lowe G, Krauth-Siegel RL (2000) (2,2':6',2''-Terpyridine)platinum(II) complexes are irreversible inhibitors of Trypanosoma cruzi trypanothione reductase but not of human glutathione reductase. J Med Chem 43:4812–4821

    Article  CAS  PubMed  Google Scholar 

  • Cenas N, Bironaite D, Dickancaite E, Anusevicius Z, Sarlauskas J, Blanchard JS (1994a) Chinifur, a selective inhibitor and "subversive substrate" for Trypanosoma congolense trypanothione reductase. Biochem Biophys Res Commun 204:224–229

    Article  CAS  PubMed  Google Scholar 

  • Cenas NK, Arscott D, Williams CHJr, Blanchard JS (1994b) Mechanism of reduction of quinones by Trypanosoma congolense trypanothione reductase. Biochemistry 33:2509–2515

  • Chan C, Yin H, Garforth J, McKie JH, Jaouhari R, Speers P, Douglas KT, Rock PJ, Yardley V, Croft SL, Fairlamb AH (1998) Phenothiazine inhibitors of trypanothione reductase as potential antitrypanosomal and antileishmanial drugs. J Med Chem 41:148–156

    Article  CAS  PubMed  Google Scholar 

  • Chibale K, Haupt H, Kendrick H, Yardley V, Saravanamuthu A, Fairlamb AH, Croft SL (2001) Antiprotozoal and cytotoxicity evaluation of sulfonamide and urea analogues of quinacrine. Bioorg Med Chem Lett 11:2655–2657

    Article  CAS  PubMed  Google Scholar 

  • Chitkul B, Bradley M (2000) Optimising inhibitors of trypanothione reductase using solid-phase chemistry. Bioorg Med Chem Lett 10:2367–2369

    Article  CAS  PubMed  Google Scholar 

  • D'Silva C, Daunes S (2002) The therapeutic potential of inhibitors of the trypanothione cycle. Expert Opin Investig Drugs 11:217–231

    Article  CAS  PubMed  Google Scholar 

  • Dumas C, Ouellette M, Tovar J, Cunningham ML, Fairlamb AH, Tamar S, Olivier M, Papadopoulou B (1997) Disruption of the trypanothione reductase gene of Leishmania decreases its ability to survive oxidative stress in macrophages. EMBO J 16:2590–2598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faerman CH, Savvides SN, Strickland C, Breidenbach MA, Ponasik JA, Ganem B, Ripoll D, Krauth-Siegel RL, Karplus PA (1996) Charge is the major discriminating factor for glutathione reductase versus trypanothione reductase inhibitors. Bioorg Med Chem 4:1247–1253

    Article  CAS  PubMed  Google Scholar 

  • Fairlamb AH, Cerami A (1992) Metabolism and functions of trypanothione in the Kinetoplastida. Annu Rev Microbiol 46:695–729

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Gomez R, Moutiez M, Aumercier M, Bethegnies G, Luyckx M, Ouaissi A, Tartar A, Sergheraert C (1995) 2-Amino diphenylsulfides as new inhibitors of trypanothione reductase. Int J Antimicrob Agents 6:111–118

    Article  CAS  PubMed  Google Scholar 

  • Fournet A, Inchausti A, Yaluff G, Rojas De Arias A, Guinaudeau H, Bruneton J, Breidenbach MA, Karplus PA, Faerman CH (1998) Trypanocidal bisbenzylisoquinoline alkaloids are inhibitors of trypanothione reductase. J Enzyme Inhib 13:1–9

  • Fournet A, Rojas de Arias A, Ferreira ME, Nakayama H, Torres de Ortiz S, Schinini A, Samudio M, Vera de Bilbao N, Lavault M, Bonte F (2000) Efficacy of the bisbenzylisoquinoline alkaloids in acute and chronic Trypanosoma cruzi murine model. Int J Antimicrob Agents 13:189–195

    Article  CAS  PubMed  Google Scholar 

  • Gallwitz H, Bonse S, Martinez-Cruz A, Schlichting I, Schumacher K, Krauth-Siegel RL (1999) Ajoene is an inhibitor and subversive substrate of human glutathione reductase and Trypanosoma cruzi trypanothione reductase: crystallographic, kinetic, and spectroscopic studies. J Med Chem 42:364–372

    Article  CAS  PubMed  Google Scholar 

  • Garforth J, Yin H, McKie JH, Douglas KT, Fairlamb AH (1997) Rational design of selective ligands for trypanothione reductase from Trypanosoma cruzi. Structural effects on the inhibition by dibenzazepines based on imipramine. J Enzyme Inhib 12:161–173

    Article  CAS  PubMed  Google Scholar 

  • Garrard EA, Borman EC, Cook BN, Pike EJ, Alberg DG (2000) Inhibition of trypanothione reductase by substrate analogues. Org Lett 2:3639–3642

    Article  CAS  PubMed  Google Scholar 

  • Girault S, Baillet S, Horvath D, Lucas V, Davioud-Charvet E, Tartar A, Sergheraert C (1997) New potent inhibitors of trypanothione reductase from Trypanosoma cruzi in the 2-aminodiphenylsulfide series. Eur J Med Chem 32:39–52

    Article  CAS  Google Scholar 

  • Girault S, Davioud-Charvet TE, Maes L, Dubremetz JF, Debreu MA, Landry V, Sergheraert C (2001) Potent and specific inhibitors of trypanothione reductase from Trypanosoma cruzi: bis(2-aminodiphenylsulfides) for fluorescent labeling studies. Bioorg Med Chem 9:837–846

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez-Correa J, Fairlamb AH, Stoppani AO (2001) Trypanosoma cruzi trypanothione reductase is inactivated by peroxidase-generated phenothiazine cationic radicals. Free Radic Res 34:363–378

    Article  CAS  PubMed  Google Scholar 

  • Hammond DJ, Cover B, Gutteridge WE (1984) A novel series of chemical structures active in vitro against the trypomastigote form of Trypanosoma cruzi. Trans R Soc Trop Med Hyg 78:91–95

    Article  CAS  PubMed  Google Scholar 

  • Henderson GB, Ulrich P, Fairlamb AH, Rosenberg I, Pereira M, Sela M, Cerami A (1988) "Subversive" substrates for the enzyme trypanothione disulfide reductase: alternative approach to chemotherapy of Chagas disease. Proc Natl Acad Sci U S A 85:5374–5378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horvath D (1997) A virtual screening approach applied to the search for trypanothione reductase inhibitors. J Med Chem 40:2412–2423

    Article  CAS  PubMed  Google Scholar 

  • Inhoff O, Richards JM, Brîet JW, Lowe G, Krauth-Siegel RL (2002) Coupling of a competitive and an irreversible ligand generates mixed type inhibitors of Trypanosoma cruzi trypanothione reductase. J Med Chem 45:4524–4530

    Article  CAS  PubMed  Google Scholar 

  • Jacoby EM, Schlichting I, Lantwin CB, Kabsch W, Krauth-Siegel RL (1996) Crystal structure of the Trypanosoma cruzi trypanothione reductase mepacrine complex. Proteins 24:73–80

    Article  CAS  PubMed  Google Scholar 

  • Jockers-Scherübl MC, Schirmer RH, Krauth-Siegel RL (1989) Trypanothione reductase from Trypanosoma cruzi. Catalytic properties of the enzyme and inhibition studies with trypanocidal compounds. Eur J Biochem 180:267–272

    Article  PubMed  Google Scholar 

  • Khan MO, Austin SE, Chan C, Yin H, Marks D, Vaghjiani SN, Kendrick H, Yardley V, Croft SL, Douglas KT (2000) Use of an additional hydrophobic binding site, the Z site, in the rational drug design of a new class of stronger trypanothione reductase inhibitor, quaternary alkylammonium phenothiazines. J Med Chem 43:3148–3156

    Article  CAS  PubMed  Google Scholar 

  • Krauth-Siegel RL, Coombs GH (1999) Enzymes of parasite thiol metabolism as drug targets. Parasitol Today 15:404–409

    Article  CAS  PubMed  Google Scholar 

  • Krauth-Siegel RL, Jacoby EM, Jockers-Scherübl MC, Schlichting I, Barbe J (1997) T. cruzi trypanothione reductase: structure-function relationships of enzyme inhibitor complexes. In: Stevenson KJ, Massey V, Williams CHJr (eds) Flavins and flavoproteins 1996. University of Calgary Press, Calgary, pp 35–44

  • Krieger S, Schwarz W, Ariyanayagam MR, Fairlamb AH, Krauth-Siegel RL, Clayton C (2000) Trypanosomes lacking trypanothione reductase are avirulent and show increased sensitivity to oxidative stress. Mol Microbiol 35:542–552

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Fennie MW, Ganem B, Hancock MT, Kobaslija M, Rattendi D, Bacchi CJ, O'Sullivan MC (2001) Polyamines with N-(3-phenylpropyl) substituents are effective competitive inhibitors of trypanothione reductase and trypanocidal agents. Bioorg Med Chem Lett 11:251–254

    Article  CAS  PubMed  Google Scholar 

  • Lowe G, Droz AS, Vilaivan T, Weaver GW, Tweedale L, Pratt JM, Rock P, Yardley V, Croft SL (1999) Cytotoxicity of (2,2':6',2''-terpyridine)platinum(II) complexes to Leishmania donovani, Trypanosoma cruzi, and Trypanosoma brucei. J Med Chem 42:999–1006

    CAS  Google Scholar 

  • McKie JH, Garforth J, Jaouhari R, Chan C, Yin H, Besheya T, Fairlamb AH, Douglas KT (2001) Specific peptide inhibitors of trypanothione reductase with backbone structures unrelated to that of substrate: potential rational drug design lead frameworks. Amino Acids 20:145–153

    Article  CAS  PubMed  Google Scholar 

  • Moreno SN, Carnieri EG, Docampo R (1994) Inhibition of Trypanosoma cruzi trypanothione reductase by crystal violet. Mol Biochem Parasitol 67:313–320

    Article  CAS  PubMed  Google Scholar 

  • Morrison J, Walsh CT (1988) The behaviour and significance of slow-binding enzyme inhibitors. Adv Enzymol Relat Areas Mol Biol 61:201–301

    CAS  PubMed  Google Scholar 

  • Obexer W, Schmid C, Barbe J, Galy JP, Brun R (1995) Activity and structure relationship of acridine derivatives against African trypanosomes. Trop Med Parasitol 46:49–53

    CAS  PubMed  Google Scholar 

  • O'Sullivan MC, Zhou Q, Li Z, Durham TB, Rattendi D, Lane S, Bacchi CJ (1997) Polyamine derivatives as inhibitors of trypanothione reductase and assessment of their trypanocidal activities. Bioorg Med Chem 5:2145–2155

    Article  CAS  PubMed  Google Scholar 

  • Ponasik JA, Strickland C, Faerman C, Savvides S, Karplus PA, Ganem B (1995) Kukoamine A and other hydrophobic acylpolyamines: potent and selective inhibitors of Crithidia fasciculata trypanothione reductase. Biochem J 311:371–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivarola HW, Fernandez AR, Enders JE, Fretes R, Gea S, Paglini-Oliva P (2001) Effects of clomipramine on Trypanosoma cruzi infection in mice. Trans R Soc Trop Med Hyg 95:529–533

    Article  CAS  PubMed  Google Scholar 

  • Salmon-Chemin L, Buisine E, Yardley V, Kohler S, Debreu MA, Landry V, Sergheraert C, Croft SL, Krauth-Siegel RL, Davioud-Charvet E (2001) 2-and 3-substituted 1,4-naphthoquinone derivatives as subversive substrates of trypanothione reductase and lipoamide dehydrogenase from Trypanosoma cruzi: synthesis and correlation between redox cycling activities and in vitro cytotoxicity. J Med Chem 44:548–565

    Article  CAS  PubMed  Google Scholar 

  • Schirmer RH, Müller J, Krauth-Siegel RL (1995) Disulfide-reductase inhibitors as chemotherapeutic agents: the design of drugs for trypanosomiasis and malaria. Angew Chem Int Ed Engl 34:141–154

    Article  CAS  Google Scholar 

  • Schmidt A, Krauth-Siegel RL (2002) Enzymes of the trypanothione metabolism as targets for antitrypanosomal drug development. Curr Top Med Chem. Curr Top Med Chem 2:1239–1259

    Article  CAS  PubMed  Google Scholar 

  • Smith HK, Bradley M (1999) Comparison of resin and solution screening methodologies in combinatorial chemistry and the identification of a 100 nM inhibitor of trypanothione reductase. J Comb Chem 1:326–332

    Article  CAS  PubMed  Google Scholar 

  • Tovar J, Cunningham ML, Smith AC, Croft SL, Fairlamb AH (1998a) Down-regulation of Leishmania donovani trypanothione reductase by heterologous expression of a trans-dominant mutant homologue: effect on parasite intracellular survival. Proc Natl Acad Sci U S A 95:5311–5316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tovar J, Wilkinson S, Mottram JC, Fairlamb AH (1998b) Evidence that trypanothione reductase is an essential enzyme in Leishmania by targeted replacement of the tryA gene locus. Mol Microbiol 29:653–660

    Article  CAS  PubMed  Google Scholar 

  • Tromelin A, Moutiez M, Meziane-Cherif D, Aumercier M, Tartar A, Sergheraert C (1993) Synthesis of non reducible inhibitors for trypanothione reductase from Trypanosoma cruzi. Bioorg Med Chem 3:1971–1976

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Luise Krauth-Siegel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krauth-Siegel, R.L., Inhoff, O. Parasite-specific trypanothione reductase as a drug target molecule. Parasitol Res 90 (Suppl 2), S77–S85 (2003). https://doi.org/10.1007/s00436-002-0771-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-002-0771-8

Keywords

Navigation