Skip to main content

Advertisement

Log in

Formulation and biopharmaceutical issues in the development of drug delivery systems for antiparasitic drugs

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract.

The development of really new antiparasitic drugs to market level is a very rare event. A large number of lead structures have already been screened and discarded, the market is large but poor, and the administrative barriers are increasingly high and costly. Novel antiparasitics must not only be better, they must also be substantially safer than the existing repertoire. There are two major aspects to drug development. One is the strategy of pathogen-specific biochemical intervention, the other the strategy of optimal formulation and application. This review focuses on the latter. In finding and adapting innovative and "intelligent", i.e. parasite- and disease-specific formulations and delivery systems, established but deficient drugs might be optimised, enhancing their efficiency and reducing negative side effects at relatively low cost. Further, many promising new ideas are severely hampered by the low water solubility of the antiparasitic drug. Here as well, some of the innovative drug formulation and delivery systems discussed below might offer highly efficient, while technologically simple, solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  • Alving CR (1983) Delivery of liposome-encapsulated drugs to macrophages. Pharmacol Ther 22:407–424

    Google Scholar 

  • Armitage K, Flanigan T, Carey J, Frank I, MacGregor RR, Ross P, Goodgame R, Turner J (1992) Treatment of cryptosporidiosis with paromomycin. A report of five cases. Arch Intern Med 152:2497–2499

    Google Scholar 

  • Baillie AJ, Coombs GH, Dolan TF, Hunter CA, Laakso T, Sjoholm I, Starnkvist P (1987) Biodegradable microspheres: polyacryl starch microparticles as a delivery system for the antileishmanial drug, sodium stibogluconate. J Pharm Pharmacol 39:832–835

    Google Scholar 

  • Banerjee G, Nandi G, Mahatoo SB, Pakrashi A, Basu MK (1996) Drug delivery system: targeting of pentamidines to specific sites using sugar grafted liposomes. J Antimicrob Chemother 38:145–150

    Google Scholar 

  • Bauer K, Frömming K-H, Führer C (2000) Pharmazeutische Technologie. Wissenschaftliche Verlagsgesellschaft, Stuttgart

  • Berman JD, Edwards N, King M, Grogl M (1989) Biochemistry of Pentostam resistant Leishmania. Am J Trop Med Hyg 40: 159–164

    Google Scholar 

  • Borchard G, Audus K, Shi F, Kreuter J (1994) Uptake of surfactant coated poly(methyl)methacrylate nanoparticles by bovine brain microvessel endothelial cell monolayers. Int J Pharm 110:29–35

    Google Scholar 

  • Carvalhaes MS, Santana JM, Nobrega OT, Aragao JB, Grellier P, Schrevel J, Teixeira AR (1998) Chemotherapy of an experimental Trypanosoma cruzi infection with specific immunoglobulin-chlorambucil conjugate. Lab Invest 78:707–714

    Google Scholar 

  • Castro-Hermida JA, Gonzalez-Losada Y, Freire-Santos F, Mezo-Menendez M, Ares-Mazas E (2001a) Evaluation of beta-cyclodextrin against natural infections of cryptosporidiosis in calves. Vet Parasitol 101:85–89

  • Castro-Hermida JA, Quilez-Cinca J, Lopez-Bernad F, Sanchez-Acedo C, Freire-Santos F, Ares-Mazas E (2001b) Treatment with beta-cyclodextrin of natural Cryptosporidium parvum infections in lambs under field conditions. Int J Parasitol 31:1134–1137

    Google Scholar 

  • Cauchetier E, Paul, M, Rivollet D, Fessi H, Astier A, Deniau M (2000) Therapeutic evaluation of free and liposome-encapsulated atovaquone in the treatment of murine leishmaniasis. Int J Parasitol 30:777–783

    Google Scholar 

  • Chakraborty R, Dasgupta D, Adhya S, Basu MK (1999). Cationic liposome-encapsulated antisense oligonucleotide mediates efficient killing of intracellular Leishmania. Biochem J 340:393–396

    Google Scholar 

  • Chavanet P (1997) Amphotericin B deoxycholate (Fungizone): old drug, new versions. Rev Med Interne 18:153–165

    Google Scholar 

  • Chimanuka B, Gabriels M, Detaevernier MR, Plaizir-Vercammen JA (2002) Preparation of beta-artemether liposomes, their HPLC-UV evaluation and relevance for clearing recrudescent parasitaemia in Plasmodium chaubaudi malaria-infected mice. J Pharm Biomed Anal 28:13–22

    Google Scholar 

  • Coukell AJ, Brogden RN (1998). Liposomal amphotericin B. Therapeutic use in the management of fungal infections and visceral leishmaniasis. Drugs 55:585–612

    Google Scholar 

  • Croft SL, Davidson RN, Thornton EA (1991) Liposomal amphotericin B in the treatment of visceral leishmaniasis. J Antimicrob Chemother 28 [Suppl B]:111–118

  • Dingler A, Blum RP, Niehus H, Müller RH, Gohla S (1999) Solid lipid nanoparticles (SLN/Lipopearls) – a pharmaceutical and cosmetic carrier for the application of vitamin E in dermal products. J Microencapsul 16:751–767

    Google Scholar 

  • Dorea EL, Yu L, De Castro I, Campos SB, Ori M, Vaccari EM, Lacaz C, Seguro AC (1997) Nephrotoxicity of amphotericin B is attenuated by solubilizing with lipid emulsion. J Am Soc Nephrol 8:1415–1422

    Google Scholar 

  • Escobar P, Yardley V, Croft SL (2001) Activities of hexadecylphosphocholine (miltefosine), AmBisome, and sodium stibogluconate (Pentostam) against Leishmania donovani in immunodeficient scid mice. Antimicrob Agents Chemother 45:1872–1875

    Google Scholar 

  • Frömming K-H (1997) Cyclodextrine – eine vielseitig verwendbare Gruppe neuer Hilfsstoffe. In: Müller R, Hildebrand G (eds) Moderne Arzneiformen. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 17–21

  • Fusai T, Boulard Y (1997) Ultrastructural changes in parasites induced by nanoparticle-bound pentamidine in a Leishmania major/mouse model. Parasite 4:133–139

    Google Scholar 

  • Gangneux JP, Sulahian A (1996) Lipid formulations of amphotericin b in the treatment of experimental visceral leishmaniasis due to Leishmania infantum. Trans R Soc Trop Med Hyg 90:574–577

    Google Scholar 

  • Garnier T, Croft SL (2002). Topical treatment for cutaneous leishmaniasis. Curr Opin Invest Drugs 3:538–544

    Google Scholar 

  • Gonzalez-Martin G, Merino I (1998) Characterization and trypanocidal activity of nifurtimox-containing and empty nanoparticles of polyethylcyanoacrylates. J Pharm Pharmacol 50:29–35

    Google Scholar 

  • Gonzalez-Martin G, Figueroa C, Merino I, Osuna A (2000) Allopurinol encapsulated in polycyanoacrylate nanoparticles as potential lysosomatropic carrier: preparation and trypanocidal activity. Eur J Pharm Biopharm 49:137–142

    Google Scholar 

  • Grogl M, Schuster BG, Ellis WY, Berman JD (1999) Successful topical treatment of murine cutaneous leishmaniasis with a combination of paromomycin (Aminosidine) and gentamicin. J Parasitol 85:354–359

    Google Scholar 

  • Guru PY, Agrawal AK (1989) Drug targeting in Leishmania donovani infections using tuftsin-bearing liposomes as drug vehicles. FEBS Lett 245:204–208

    Google Scholar 

  • Hrckova G, Velebny S (2001) Treatment of Toxocara canis infections in mice with liposome-incorporated benzimidazole carbamates and immunmodulator glucan. J Helminthol 75:141–146

    Google Scholar 

  • Just-Nubling G (1994) Therapy of candidiasis and cryptococcosis in AIDS. Mycoses 37 [Suppl 2]:56–63

    Google Scholar 

  • Kayser O (2000) Nanosuspensions for the formulation of aphidicolin to improve drug targeting effects against leishmania infected macrophages. Int J Pharm 196:253–256

    Google Scholar 

  • Kayser O (2001) A new approach for targeting to Cryptosporidium parvum using mucoadhesive nanosuspensions: research and applications. Int J Pharm 214:83–85

    Google Scholar 

  • Kayser O, Keithly J (2000) Nanosuspensions as potential drug delivery system for aurones, a new group of natural products for the treatment of cryprosporidiosis. Proceedings of the third world meeting of pharmaceutical technology. pp413–414

  • Kayser O, Kiderlen A, Gelderblom H (2001) Aufnahme von Wirkstoff-Nanopartikeln in Leishmania donovani infizierten Makrophagen. Dtsch Apoth Z 141:1836–1838

    Google Scholar 

  • Kreuter J (1983a) Evaluation of nanoparticles as drug-delivery systems. II: Comparison of the body distribution of nanoparticles with the body distribution of microspheres (diameter greater than 1 micron), liposomes, and emulsions. Pharm Acta Helv 58:217–226

    Google Scholar 

  • Kreuter J (1983b) Evaluation of nanoparticles as drug-delivery systems. III: materials, stability, toxicity, possibilities of targeting, and use. Pharm Acta Helv 58:242–250

    Google Scholar 

  • Kreuter J (1991) Liposomes and nanoparticles as vehicles for antibiotics. Infection 19:S224–228

    Google Scholar 

  • Kreuter J (1994) Drug targeting with nanoparticles. Eur J Drug Metab Pharmacokinet 19:253–256

    Google Scholar 

  • Kreuter J (1995) Nanoparticulate systems in drug delivery and targeting. J Drug Target 3:171–173

    Google Scholar 

  • Kreuter J (1996). Nanoparticles and microparticles for drug and vaccine delivery. J Anat 189:503–505

    Google Scholar 

  • Lamothe J (2001) Activity of amphotericin B in lipid emulsion in the initial treatment of canine leishmaniasis. J Small Anim Pract 42:170–175

    Google Scholar 

  • Lehr CM, Haas J (2002) Developments in the area of bioadhesive drug delivery systems. 2:287–298

  • Mandal TK (1999) Effect of solvent on the characteristics of pentamidine loaded microcapsule. J Biomater Sci Polym 10:1–17

    Google Scholar 

  • Maurin M, Raoult D (1996). Optimum treatment of intracellular infection. Drugs 52:45–59

    Google Scholar 

  • McKellar QA (1994) Chemotherapy and delivery systems – helminths. Vet Parasitol 54:249–258

    Google Scholar 

  • Meyerhoff A (1999) U S Food and Drug Administration approval of AmBiosome (liposomal amphotericin B) for treatmentod visceral leishmaniasis. Am J Trop Med Hyg 40: 159–164

    Google Scholar 

  • Müller RH (1991) Colloidal carriers for controlled drug delivery and targeting. Wissenschaftliche Verlagsgesellschaft, Stuttgart

  • Müller R, Böhm B (1998) Nanosuspensions. In: Müller R, Böhm B, Benita S (eds) Nanosuspensions. Emulsions and nanosuspensions for the formulation of poorly soluble drugs.Medpharm Scientific, Stuttgart, pp149–173

  • Müller R, Peters K (1998) Nanosuspensions for the formulation of poorly soluble drugs. I. Preparation by a size-reduction technique. Int J Pharm 160:229–237

    Google Scholar 

  • Müller RH, Maassen S, Weyhers H, Mehnert W (1996) Phagocytic uptake and cytotoxicity of solid lipid nanoparticles (SLN) sterically stabilized with poloxamine 908 and poloxamer 407. J Drug Target 4:161–170

    Google Scholar 

  • Müller RH, Rühl D, Runge S, Lück M, Paulke BR (1997). Influence of fluorescent labelling of polystyrene particles on phagocytic uptake, surface hydrophobicity, and plasma protein adsorption. Pharm Res 14:18–24

    Google Scholar 

  • Müller RH, Rühl D, Runge S, Schulze-Förster K, Mehnert W (1997b) Cytotoxicity of solid lipid nanoparticles as a function of the lipid matrix and the surfactant. Pharm Res 14:458–462

    Google Scholar 

  • Müller RH, Mäder K, Gohla S (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. Eur J Pharm Biopharm 50:161–177

    Google Scholar 

  • Müller RH, Jacobs C, Kayser O (2001) Nanosuspensions as particulate drug formulations in therapy. Rationale for development and what we can expect for the future. Adv Drug Deliv Rev 47:3–19

    Google Scholar 

  • Naresh RA, Udupa N, Devi PU (1996) Niosomal plumbagin with reduced toxicity and improved anticancer activity in BALB/C mice. J Pharm Pharmacol 48:1128–1132

    Google Scholar 

  • Navin TR, Juranek DD (1984) Cryptosporidiosis: clinical, epidemiologic, and parasitologic review. Rev Infect Dis 6:313–327

    Google Scholar 

  • Oliva G, Gradoni L, Ciaramella P, De Luna R, Cortese L, Orsini S, Davidson RN, Persechino A (1995) Activity of liposomal amphotericin B (AmBisome) in dogs naturally infected with Leishmania infantum. J Antimicrob Chemother 36:1013–1019

    Google Scholar 

  • O'Neil MG, Lapointe M (1997) Administration of amphotericin B in lipid emulsion. Crit Care Med 25:892–893

    Google Scholar 

  • Pahissa A (1997) Amphotericin B. Lipid complex versus liposomes. Which, why, when? Enferm Infecc Microbiol Clin 15:1–3

  • Panosian CB, Barza M, Szoka F, Wyler DJ (1984) Treatment of experimental cutaneous leishmaniasis with liposome-intercalated amphotericin B. Antimicrob Agents Chemother 25:655–656

    Google Scholar 

  • Papahadjopoulos D, Vail WJ, Jacobson K, Poste G (1975). Cochleate lipid cylinders: formation by fusion of unilamellar lipid vesicles. Biochim Biophys Acta 394:483–491

    Google Scholar 

  • Paul, M, Durand, R, Boulard Y, Fusai T, Fernandez C, Rivollett D, Deniau M, Astier A (1998) Physicochemical characteristics of pentamidine-loaded polymethacrylate nanoparticles: implication in the intracellular drug release in Leishmania major infected mice. J Drug Target 5:481–490

    Google Scholar 

  • Peeters PA, Huiskamp CW, Eling WM, Crommelin DJ (1989) Chloroquine containing liposomes in the chemotherapy of murine malaria. Parasitology 3:381–386

    Google Scholar 

  • Petit N, Parola P, Dhiver C, Gastaut JA (1996) Efficacy and tolerance of amphotericin B in a lipid emulsion in the treatment of visceral leishmaniasis in AIDS patients. J Antimicrob Chemother 38:154–157

    Google Scholar 

  • Proulx ME, Desormeaux A, Marquis JF, Olivier M, Bergeron MG (2001) Treatment of visceral leishmaniasis with sterically stabilized liposomes containing camptothecin. Antimicrob Agents Chemother 45:2623–2627

    Google Scholar 

  • Pyle R (1981) Clinical pharmacology of amphotericin B. J Am Vet Med Assoc 179:83–84

    Google Scholar 

  • Raay B, Medda S, Mukhopadhyay S, Basu MK (1999) Targeting of piperine intercalated in mannose-coated liposomes in experimental leishmaniasis. Indian J Biochem Biophys 36: 248–251

    Google Scholar 

  • Ramos H, Brajtburg J, Marquez V, Cohen BE (1995) Comparison of the leishmanicidal activity of fungizone, liposomal AmB and amphotericin B incorporated into egg lecithin-bile salt mixed micelles. Drugs Exp Clin Res 21:211–216

    Google Scholar 

  • Ranchere JY, Latour JF, Fuhrmann C, Lagallarde C, Loreuil F (1996) Amphotericin B intralipid formulation: stability and particle size. J Antimicrob Chemother 37:1165–1169

    Google Scholar 

  • Roberts WL, Hariprashad J, Rainey PM, Murray HW (1996) Pentavalent antimony-mannan conjugate therapy of experimental visceral leishmaniasis. Am J Trop Med Hyg 55:444–446

    Google Scholar 

  • Rodrigues JMJr, Croft SL, Fessi H, Bories C, Devissaguet JP (1994) The activity and ultrastructure localization of primaquine-loaded poly (d,l-lactide) nonoparticles in Leishmania donovani infected mice. Trop Med Parasitol 45:223–228

  • Santangelo R, Paderu P, Delmas G, Chen ZW, Mannino R, Zarif L, Perlin DS (2000) Efficacy of oral cochleate-amphotericin B in a mouse model of systemic candidiasis. Antimicrob Agents Chemother 44:2356–2360

    Google Scholar 

  • Schöler N, Krause K, Kayser O, Müller RH, Borner K, Hahn H, Liesenfeld O (2001a) Atovaquone nanosuspensions show excellent therapeutic effect in a new murine model of reactivated toxoplasmosis. Antimicrob Agents Chemother 45:1771–1779

    Google Scholar 

  • Schöler N, Olbrich C, Tabatt K, Müller RH, Hahn H, Liesenfeldt O (2001b) Surfactant, but not the size of solid lipid nanoparticles (SLN) influences viability and cytokine production of macrophages. Int J Pharm 221:57–67

    Google Scholar 

  • Segovia M, Navarro A, Artero JM (1989) The effect of liposome-entrapped desferrioxamine on Leishmania donovani in vitro. Ann Trop Med Parasitol 83:357–360

  • Seifert K, Duchene M, Wernsdorfer WH, Kollaritsch H, Scheiner O, Wiedermann G, Hottkowitz T, Eibl H (2001) Effects of miltefosine and other alkylphosphocholines on human intestinal parasite Entamoeba histolytica. Antimicrob Agents Chemother 45:1505–1510

    Google Scholar 

  • Sen N, Samanta A, Baidya S, Gupta BK, Ghosh LK (1998) Development of amphotericin B loaded nanoparticles. Boll Chim Farm 137:295–297

    Google Scholar 

  • Sievers TM, Kubak BM, Wong-Beringer A (1996) Safety and efficacy of Intralipid emulsions of amphotericin B. J Antimicrob Chemother 38:333–347

    Google Scholar 

  • Sinha J, Mukhopadhyay S, Das N, Basu MK (2000) Targeting of liposomal andrographolide to L. donovani-infected macrophages in vivo. Drug Deliv 7:209–213

    Google Scholar 

  • Soto J, Hernandez N, Meija H, Grogl M, Berman J (1995) Successful treatment of New World cutaneous leishmaniasis with a combination of topical paromomycin/ methylbenzethonium chloride and injectable meglumine antimonate. Clin Infect Dis 20:47–51

    Google Scholar 

  • Sundar S (2001) Liposomal amphotericin B. Lancet 357:801–802

    Google Scholar 

  • Tachibana H, Yoshihara E, Kaneda Y, Nakae T (1988) In vitro lysis of the blood stream forms of Trypanosoma brucei gambiense by stearylamine-bearing liposomes. Antimicrob Agents Chemother. 32:966–970

    Google Scholar 

  • Valladares JE, Riera C, Gonzalez-Ensenyat P, Diez-Cascon A, Ramos G, Solano-Gallego L, Gallego M, Portus M, Arboix M, Alberola J (2001) Long term improvement in the treatment of canine leishmaniasis using an antimony liposomal formulation. Vet Parasitol 97:15–21

    Google Scholar 

  • Venier-Julienne MC, Benoit, JP (1996) Preparation, purification and morphology of polymeric nanoparticles as drug carriers. Pharm Acta Helv 71:121–128

    Google Scholar 

  • Walker SA, Kennedy MT, Zasadzinski JA (1997) Encapsulation of bilayer vesicles by self-assembly. Nature 387:61–64

    Google Scholar 

  • Weldon JS, Munnell JF, Hanson WL, Alving CR (1983) Liposomal chemotherapy in visceral leishmaniasis: an ultrastructural study of an intracellular pathway. Z Parasitenkd 69:415–424

    Google Scholar 

  • Wong JW, Yuen KH (2001) Improved oral bioavailability of artemisinin through inclusion complexation with beta- and gamma-cyclodextrins. Int J Pharm 227:177–185

    Google Scholar 

  • Yardley V, Croft S (2000) A comparison of the activities of three amphotericin B lipid formulations against experimental visceral and cutaneous leishmaniasis. Int J Antimicrob Agents 13:243–248

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Kayser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kayser, O., Olbrich, C., Croft, S.L. et al. Formulation and biopharmaceutical issues in the development of drug delivery systems for antiparasitic drugs. Parasitol Res 90 (Suppl 2), S63–S70 (2003). https://doi.org/10.1007/s00436-002-0769-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-002-0769-2

Keywords

Navigation