, Volume 137, Issue 3, pp 389–406 | Cite as

Harden up: metal acquisition in the weaponized ovipositors of aculeate hymenoptera

  • Kate Baumann
  • Edward P. Vicenzi
  • Thomas Lam
  • Janet Douglas
  • Kevin Arbuckle
  • Bronwen Cribb
  • Seán G. Brady
  • Bryan G. Fry
Original paper


The use of metal ions to harden the tips and edges of ovipositors is known to occur in many hymenopteran species. However, species using the ovipositor for delivery of venom, which occurs in the aculeate hymenoptera (stinging wasps, ants, and bees) remains uninvestigated. In this study, scanning electron microscopy coupled with energy-dispersive X-ray analysis was used to investigate the morphology and metal compositional differences among aculeate aculei. We show that aculeate aculei have a wide diversity of morphological adaptations relating to their lifestyle. We also demonstrate that metals are present in the aculei of all families of aculeate studied. The presence of metals is non-uniform and concentrated in the distal region of the stinger, especially along the longitudinal edges. This study is the first comparative investigation to document metal accumulation in aculeate aculei.


Scanning electron microscopy Energy-dispersive X-ray spectroscopy EDS Aculeata Aculeus Cuticle Metal accumulation 



We thank UQ Centre for Microscopy for training in SEM techniques and MCI at the Smithsonian for use of microscopy facilities. KB received support from the Peter Buck predoctoral fellowship program (NMNH) and a UQ PhD scholarship. SGB received research support from U.S. National Science Foundation Grant DEB-1555905.


  1. Arévalo E, Zhu Y, Carpenter JM, Strassmann JE, Queller DC, Flook P, Zhao S, Zacchi F, Queller DC, Strassmann JE (2004) The phylogeny of the social wasp subfamily Polistinae: evidence from microsatellite flanking sequences, mitochondrial COI sequence, and morphological characters. BMC Evolut Biol 4(1):8–8CrossRefGoogle Scholar
  2. Ascher JS, Danforth BN, Ji S (2001) Phylogenetic utility of the major opsin in Bees (Hymenoptera: Apoidea): a reassessment. Mol Phylogenet Evol 19(1):76–93CrossRefPubMedGoogle Scholar
  3. Borowiec ML, Rabeling C, Brady SG, Fisher BL, Schultz TR, Ward PS (2017) Compositional heterogeneity and outgroup choice influence the internal phylogeny of the ants. Mol Phylogenet Evol (Sumbitted) Google Scholar
  4. Brady SG, Schultz TR, Fisher BL, Ward PS (2006) Evaluating alternative hypotheses for the early evolution and diversification of ants. Proc Natl Acad Sci USA 103(48):18172–18177CrossRefPubMedGoogle Scholar
  5. Branstetter MG, Danforth BN, Pitts JP, Faircloth BC, Ward PS, Buffington ML, Gates MW, Kula RR, Brady SG (2017) Phylogenomic insights into the evolution of stinging wasps and the origins of ants and bees. Curr Biol 27(7):1019–1025CrossRefPubMedGoogle Scholar
  6. Cameron SA, Hines HM, Williams PH (2007) A comprehensive phylogeny of the bumble bees (Bombus). Biol J Lin Soc 91(1):161–188CrossRefGoogle Scholar
  7. Cardinal S, Danforth BN, Pitts JP, Gillespie JJ, Cameron SA (2011) The antiquity and evolutionary history of social behavior in bees. PLoS One 6(6):e21086–e21086CrossRefGoogle Scholar
  8. Cribb BW, Stewart A, Huang H, Truss R, Noller B, Rasch R, Zalucki MP (2008) Unique zinc mass in mandibles separates drywood termites from other groups of termites. Die Naturwissenschaften 95(5):433–441CrossRefPubMedGoogle Scholar
  9. Cribb BW, Lin CL, Rintoul L, Rasch R, Hasenpusch J, Huang H (2010) Hardness in arthropod exoskeletons in the absence of transition metals. Acta Biomater 6(8):3152–3156CrossRefPubMedGoogle Scholar
  10. Degtyar E, Harrington MJ, Politi Y, Fratzl P (2014) The mechanical role of metal ions in biogenic protein-based materials. Angew Chem Int Ed 53(45):12026–12044CrossRefGoogle Scholar
  11. Edwards A, Fawke JD, McClements JG, Smith SA, Wyeth P (1993) Correlation of zinc distribution and enhanced hardness in the mandibular cuticle of the leaf-cutting ant Atta sexdens rubropilosa. Cell Biol Int 17(7):697–698CrossRefGoogle Scholar
  12. Fisher RM (1993) How important is the sting in insect social evolution? Ethol Ecol Evol 5(2):157–168CrossRefGoogle Scholar
  13. Fontaine AR, Olsen N, Ring RA, Singla CL (1991) Cuticular metal hardening of mouthparts and claws of some forest insects of British Columbia. J Entomol Soc Br Columbia 88:45–55Google Scholar
  14. Goldstein JI, Newbury DE, Echlin P, Joy DC, Romig AD, Lyman CE, Fiori C, Lifshin E (1992) Scanning electron microscopy and X-ray microanalysis. A text for biologists, materials scientists, and geologists, 2nd ed. Plenum Press, New YorkGoogle Scholar
  15. Hasegawa E, Crozier RH (2006) Phylogenetic relationships among species groups of the ant genus Myrmecia. Mol Phylogenet Evol 38(3):575–582CrossRefPubMedGoogle Scholar
  16. Hermann HR (1971) Sting autotomy, a defensive mechanism in certain social Hymenoptera. Insectes Soc 18(2):111–120CrossRefGoogle Scholar
  17. Hermann HR (1984). Defensive mechanisms in social insects. PraegerGoogle Scholar
  18. Hillerton JE, Vincent JFV (1982) The specific location of zinc in insect mandibles. J Exp Biol 101:333–336Google Scholar
  19. Hillerton JE, Robertson B, Vincent JFV (1984) The presence of zinc or manganese as the predominant metal in the mandibles of adult, stored-product beetles. J Stored Prod Res 20(3):133–137CrossRefGoogle Scholar
  20. Kukuk PF, Eickwort GC, Raveret-Richter M, Alexander B, Gibson R, Morse RA, Ratnieks F (1989) Importance of the sting in the evolution of sociality in the hymenoptera. Ann Entomol Soc Am 82(1):1–5CrossRefGoogle Scholar
  21. Kundanati L, Gundiah N (2014) Biomechanics of substrate boring by fig wasps. J Exp Biol 217(11):1946–1954CrossRefPubMedGoogle Scholar
  22. Lopez-Osorio F, Pickett KM, Carpenter JM, Ballif BA, Agnarsson I (2014) Phylogenetic relationships of yellowjackets inferred from nine loci (Hymenoptera: Vespidae, Vespinae, Vespula and Dolichovespula). Mol Phylogenet Evol 73:190–201CrossRefPubMedGoogle Scholar
  23. Maschwitz UWJ, Kloft W (1981) Morphology and function of the venom apparatus of insects—bees, wasps, ants and caterpillars. Academic Press, Berlin; New YorkGoogle Scholar
  24. Morgan TD, Baker P, Kramer KJ, Basibuyuk HH, Quicke DLJ (2003) Metals in mandibles of stored product insects: do zinc and manganese enhance the ability of larvae to infest seeds? J Stored Prod Res 39(1):65–75CrossRefGoogle Scholar
  25. Orme D, Freckleton R, Thomas G, Petzoldt T, Fritz S, Isaac N, Pearse W (2015) caper: Comparative analyses of phylogenetics and evolution R. R package version 0.5.2Google Scholar
  26. Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20(2):289–290CrossRefPubMedGoogle Scholar
  27. Perrard A, Pickett K, Villemant C, Kojima J-i, Carpenter J (2013) Phylogeny of hornets: a total evidence approach (Hymenoptera, Vespidae, Vespinae, Vespa). J Hymenoptera Res 32:1–15CrossRefGoogle Scholar
  28. Piek T (1986) Historical Introduction. In: Piek T (ed) Venoms of the hymenoptera: biochemical, pharmacological and behavioural aspects. Academic Press, Florida, pp 1–13Google Scholar
  29. Polidori C, García AJ, Nieves-Aldrey JL (2013) Breaking up the wall: metal-enrichment in Ovipositors, but not in mandibles, co-varies with substrate hardness in gall-wasps and their associates. PLoS ONE 8(7):70529–70529CrossRefGoogle Scholar
  30. Quicke D (1998) Manganese and zinc in the ovipositors and mandibles of hymenopterous insects. Zool J Linnean Soc 124(4):387–396CrossRefGoogle Scholar
  31. Quicke DLJ (2014) The braconid and ichneumonid parasitoid wasps biology, systematics, evolution and ecology. WileyGoogle Scholar
  32. Quicke DLJ, Leralec A, Vilhelmsen L (1999) Ovipositor structure and function in the parasitic Hymenoptera with an exploration of new hypotheses. Atti dell’Accademia Nazionale Italiana di Entomologia Rendiconti 47:197–239Google Scholar
  33. Ramya J, Rajagopal D (2008) Morphology of the sting and its associated glands in four different honey bee species. J Apic Res 47(1):46–52CrossRefGoogle Scholar
  34. Revell LJ (2012) phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 3(2):217–223CrossRefGoogle Scholar
  35. Robertson PL (1968) A morphological and functional study of the venom apparatus in representatives of some major groups of Hymenoptera. Aust J Zool 16(1):133–133CrossRefGoogle Scholar
  36. Santos BF, Payne A, Pickett KM, Carpenter JM (2015) Phylogeny and historical biogeography of the paper wasp genus Polistes (Hymenoptera: Vespidae): implications for the overwintering hypothesis of social evolution. Cladistics 31(5):535–549CrossRefGoogle Scholar
  37. Schmidt C (2013) Molecular phylogenetics of ponerine ants (Hymenoptera: Formicidae: Ponerinae). Zootaxa 3647(2):201–250CrossRefPubMedGoogle Scholar
  38. Schmidt JO (2016). The sting of the wild. Johns Hopkins University PressGoogle Scholar
  39. Schmitz J, Moritz RFA (1998) Molecular phylogeny of Vespidae (Hymenoptera) and the evolution of sociality in wasps. Mol Phylogenet Evol 9(2):183–191CrossRefPubMedGoogle Scholar
  40. Schofield RMS (2005) Metal-halogen biomaterials, vol 51, pp 45–47Google Scholar
  41. Schofield RMS, Postlethwait JH, Lefevre HW (1997) MeV-ion microprobe analyses of whole Drosophila suggest that zinc and copper accumulation is regulated storage not deposit excretion. J Exp Biol 200(Pt 24):3235–3243PubMedGoogle Scholar
  42. Schofield RMS, Nesson MH, Richardson KA (2002) Tooth hardness increases with zinc-content in mandibles of young adult leaf-cutter ants. Die Naturwissenschaften 89(12):579–583PubMedGoogle Scholar
  43. Shorter JR, Rueppell O (2012) A review on self-destructive defense behaviors in social insects. Insectes Soc 59(1):1–10CrossRefGoogle Scholar
  44. Sledge MF, Dani FR, Fortunato A, Maschwitz U, Clarke SR, Francescato E, Hashim R, Morgan ED, Jones GR, Turillazzi S (1999) Venom induces alarm behaviour in the social wasp Polybioides raphigastra (Hymenoptera: Vespidae): an investigation of alarm behaviour, venom volatiles and sting autotomy. Physiological Entomology 24(3):234–239CrossRefGoogle Scholar
  45. Starr CK (1985) Enabling mechanisms in the origin of sociality in the hymenoptera—the sting’s the thing. Ann Entomol Soc Am 78(6):836–840CrossRefGoogle Scholar
  46. Starr CK (1989) In reply, is the sting the thing? Ann Entomol Soc Am 82(1):6–8CrossRefGoogle Scholar
  47. Symonds MRE, Blomberg SP (2014) A primer on phylogenetic generalised least squares. Springer, Berlin Heidelberg, Berlin, pp 105–130Google Scholar
  48. Willis LG, Winston ML, Honda BM (1992) Phylogenetic relationships in the honeybee (Genus Apis) as determined by the sequence of the cytochrome oxidase II region of mitochondrial DNA. Mol Phylogenet Evol 1(3):169–178CrossRefPubMedGoogle Scholar
  49. Wilson JS, Williams KA, Forister ML, von Dohlen CD, Pitts JP (2012) Repeated evolution in overlapping mimicry rings among North American velvet ants. Nat Commun 3:1272–1272CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Venom Evolution Lab, School of Biological SciencesUniversity of QueenslandSt LuciaAustralia
  2. 2.Museum Conservation InstituteSmithsonian InstitutionSuitlandUSA
  3. 3.Department of Biosciences, College of ScienceSwansea UniversitySwanseaUK
  4. 4.Centre for Microscopy and MicroanalysisThe University of QueenslandSt LuciaAustralia
  5. 5.School of Biological SciencesUniversity of QueenslandSt LuciaAustralia
  6. 6.Department of Entomology, National Museum of Natural HistorySmithsonian InstitutionWashingtonUSA

Personalised recommendations