, Volume 137, Issue 2, pp 337–348 | Cite as

Biophysical heterogeneity in the tympanic membrane of the Asian water monitor lizard, Varanus salvator

  • Dawei Han
  • Bruce A. YoungEmail author
Original paper


The tympanic membrane of the Asian water monitor lizard (Varanus salvator) is functionally divided into dorsal, more pliant, and ventral, stiffer regions. The ventral portion is smaller and vibrates significantly (up to 12×) more to the same stimuli. The pattern of tympanic membrane response is frequency-dependent with a peak response centered around 2.5 kHz, and a lower response at 0.5 kHz. This pattern of tympanic membrane frequency response coincides with the high- and low-frequency ranges of the varanid auditory response. The functional relationship between the tympanic heterogeneity and the internally coupled ears of the varanid auditory system is uncertain, as is the exact role of the tympanum in modulating pharyngeal pressure. The middle ear dynamics of Varanus salvator, and likely those of other squamates, are more complex than previously reported.


Audition Squamata Hearing Vibration 



The authors wish to thank P. Kondrashov and the administration of ATSU, as well as C. Montgomery and the Department of Biology of Truman State University for their support of this research.


  1. Barfuss D, Dantzler W (1976) Glucose transport in isolated perfused proximal tubules of snake kidney. Am J Physiol 231:1716–1728PubMedGoogle Scholar
  2. Bels V, Chardon M, Kardong K (1994) Biomechanics of the hyolingual system in Squamata. In: Bels V, Chardon M, Vandewalle P (eds) Advances in comparative and environmental physiology, vol 18. Springer, New York, pp 197–240Google Scholar
  3. Bierman HS, Thornton JL, Jones HC, Koka K, Young BA, Brandt C, Christensen-Dalsgaard J, Carr CE, Tollin DJ (2014) Biophysics of directional hearing in the American alligator (Alligator mississippiensis). J Exp Biol 217:1094–1107CrossRefPubMedPubMedCentralGoogle Scholar
  4. Brainerd E (1999) New perspectives on the evolution of lung ventilation mechanisms in vertebrates. EBO 4:1. CrossRefGoogle Scholar
  5. Christensen-Dalsgaard J, Manley GA (2005) Directionality of the lizard ear. J Exp Biol 208:1209–1217CrossRefPubMedGoogle Scholar
  6. Christensen-Dalsgaard J, Manley GA (2008) Acoustical coupling of the lizard eardrum. J Assoc Res Otolaryngol 9:407–416CrossRefPubMedPubMedCentralGoogle Scholar
  7. Christensen-Dalsgaard J, Brandt C, Willis KL, Christensen CB, Ketten D, Edds-Walton P, Fay RR, Madsen PT, Carr CE (2012) Specialization for underwater hearing by the tympanic middle ear of the turtle, Trachemys scripta elegans. Proc Roy Soc Biol B. CrossRefGoogle Scholar
  8. Decraemer WF, Funnell WR (2008) Anatomical and mechanical properties of the tympanic membrane. In: Ars B (ed) Chronic otitis media. Pathogenesis-oriented therapeutic management. Kugler Publications, Amsterdam, pp 51–84Google Scholar
  9. Dirckxa JJJ, Decraemera WF, Ungeb MV, Larssonb CH (1998) Volume displacement of the gerbil eardrum pars flaccida as a function of middle ear pressure. Hear Res 118:35–46CrossRefGoogle Scholar
  10. Dudley R, Rand A, (1991). Sound production and vocal sac inflation in the Tungara frog, Physalaemus pustulosus (leptodactylidae). Copeia 1991:460–470Google Scholar
  11. Fletcher NH (1992) Acoustic systems in biology. Oxford University Press, New YorkGoogle Scholar
  12. Gallup A (2011) Why do we yawn? Primitive versus derived features. Neurosci BioBeh Rev 35:765–769CrossRefGoogle Scholar
  13. Gorga MP, Kaminski JR, Beauchaine KA, Jesteadt W (1988) Auditory brainstem response to tone bursts in normally hearing subjects. J Speech Hear Res 31:87–97CrossRefPubMedGoogle Scholar
  14. Han D, Young BA (2016) Anatomical basis of dynamic modulation and tuning of the middle ear in the water monitor lizard, Varanus salvator. Anat Rec 299:1270–1280CrossRefGoogle Scholar
  15. Hellström S, Stenfors L-E (1983) The pressure equilibrating function of pars flaccida in middle ear mechanics. Acta Physiol 118:337–341CrossRefGoogle Scholar
  16. Henson OW, Henson MM (2000) The tympanic membrane: highly developed smooth muscle arrays in the annulus fibrosus of mustached bats. J Assoc Res Otolaryngol 1:25–32CrossRefPubMedPubMedCentralGoogle Scholar
  17. Jackson R, Chlebicki C, Krasieva T, Puria S (2008) Multiphoton microscopy imaging of collagen fiber layers and orientation in the tympanic membrane. Proc. SPIE 6842, Photonic Therapeutics and Diagnostics IV, 68421D.
  18. Knutsson J, Bagger-Sjoback D, von Unge M (2007) Distribution of different collagen types in the rat’s tympanic membrane and its suspending structures. Otology Neurot 28:486–491CrossRefGoogle Scholar
  19. Lim DJ (1995) Structure and function of the tympanic membrane: a review. Acta Oto-Rhino-Laryn Belgica 49:101–115CrossRefGoogle Scholar
  20. Luna LG (1968) Manual of Histological Staining Methods of the Armed Forces Institute of Pathology. McGraw-Hill, New YorkGoogle Scholar
  21. Manley G (1972) The middle ear of the Tokay gecko. J Comp Physiol A 81:239–250CrossRefGoogle Scholar
  22. Manley G (1977) Response patterns and peripheral origin of auditory nerve fibers in the monitor lizard, Varanus bengalensis. J Comp Physiol A 118:249–260CrossRefGoogle Scholar
  23. Mason MJ, Wang M, Narins PM (2009) Structure and function of the middle ear apparatus of the aquatic frog, Xenopus laevis. Proc Inst Acoust 31:13–21PubMedPubMedCentralGoogle Scholar
  24. Muyshondt P, Joris S, Daniel de G, Felipe SMP, Aerts P, Joris D (2016) A single-ossicle ear: acoustic response and mechanical properties measured in duck. Hear Res. CrossRefPubMedGoogle Scholar
  25. O’Connor K, Tam M, Blevins N. Puria S (2008) Tympanic membrane collagen fibers: a key to high-frequency sound conduction. Laryngoscope 118:483–490CrossRefPubMedGoogle Scholar
  26. Owerkowicz T, Farmer C, Hicks J, Brainerd E (1999) Contribution of gular pumping to lung ventilation in monitor lizards. Science 284:1661–1663CrossRefPubMedGoogle Scholar
  27. Sadé J (1997) On the function of the pars flaccida: retraction of the pars flaccida and buffering of negative middle ear pressures. Acta Oto-Laryng 117:289–292CrossRefGoogle Scholar
  28. Stenfors LE, Salen B, Winblad B (1979) The role of the pars flaccida in the mechanics of the middle ear. Acta Oto-Laryng 88:1–6CrossRefGoogle Scholar
  29. Vedurmudi A, Goulet J, Christensen-Dalsgaard J, Young BA, Williams R, van Hemmen JL (2016a) How internally coupled ears generate temporal and amplitude cues for sound localization. Phys Rev Lett 116:028101CrossRefPubMedGoogle Scholar
  30. Vedurmudi A, Young BA, van Hemmen JL (2016b) Internally coupled ears: mathematical structures and mechanisms underlying ICE. Biol Cyber. CrossRefGoogle Scholar
  31. Vossen C, Christensen-Dalsgaard J, van Hemmen JL (2010) Analytical model of internally coupled ears. J Acoust Soc Am 128:909–918CrossRefPubMedGoogle Scholar
  32. Werner Y, Wever EG (1972) The function of the middle ear in lizards: Gekko gecko and Eublepharis macularius (Gekkonoidea). J Exp Zool 179:1–16CrossRefGoogle Scholar
  33. Wever EG (1978) The reptile ear: its structure and function. Princeton University Press, PrincetonGoogle Scholar
  34. Wever EG, Lawrence M (1954) Physiological acoustics. Princeton University Press, PrincetonCrossRefGoogle Scholar
  35. Wever EG, Werner Y (1970) The function of the middle ear in lizards: Crotaphytus collaris (Iguanidae). J Exp Zool 175:327–342CrossRefPubMedGoogle Scholar
  36. Young BA (2016) Anatomical influences on internally coupled ears in reptiles. Biol Cyber. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Anatomy, Kirksville College of Osteopathic MedicineA.T. Still UniversityKirksvilleUSA

Personalised recommendations