Advertisement

Zoomorphology

, Volume 137, Issue 2, pp 315–327 | Cite as

Ecomorphological trajectories of reef fish sister species (Pomacentridae) from both sides of the Isthmus of Panama

  • Rosalía Aguilar-Medrano
Original paper

Abstract

The vicariance model of biogeography focuses on allopatric speciation through fragmentation from an ancestral biota via a barrier that interrupts gene flow between populations. The evolutionary processes that occur over time in sister species on each side of the vicariance event influence their traits by a compromise between divergence and conservatism. The eastern Pacific and the Caribbean Sea were separated by the Isthmus of Panama ~ 3–6 Mya and allopatric speciation occurred on either side of the isthmus. Differences in ecological conditions on each side of the Isthmus of Panama separating the sister species may have shaped their niches and morphologies over evolutionary time. The objectives of this study were to: (1) analyze the variation in niche, morphology, and size in each pair of sister damselfish species on both sides of the Isthmus of Panama, (2) determine whether these variables show specific patterns on each side of the isthmus, and (3) determine whether these variables are correlated through evolution. The results showed no relationship between morphology and niche, however, size was related to both niche and morphology. Sister damselfish species on either side of the Isthmus of Panama differ in terms of niche, morphology, and size. Nevertheless, they also show similarities, indicating environmental constraints and conservatism. This study describes a model in which adaptation or divergence and conservatism shaped the evolution of sister damselfish species on both sides of the Isthmus of Panama. These mechanisms are fundamental to population biology, and they act in opposite directions.

Keywords

Damselfish Reef fish Vicariance Isthmus of Panama Niche Morphology 

Notes

Acknowledgements

This study was partially funded by the Universidad Autónoma de Tamaulipas (project PFI2015-06). I am in debt and grateful to all my colleagues in the fish collections. Lucia Campos and Eduardo F. Balart at CIBNOR, La Paz, BCS, Mexico; Victor Cota and José De La Cruz-Agüero at CICIMAR, La Paz, BCS, Mexico; Rick Feeney at LACM, Los Angeles, CA, USA; H.J. Walker and Phil Hastings at SIO, San Diego, CA, USA; and Zachary Randall and Rob Robins at FLMNH, Florida, USA.

Compliance with ethical standards

Conflict of interest

The author declares no conflict of interest.

Ethical approval

This study did not use live organisms.

Supplementary material

435_2017_391_MOESM1_ESM.doc (42 kb)
Supplementary material 1 (DOC 41 KB)

References

  1. Ackerly DD (2003) Community assembly, niche conservatism, and adaptive evolution in changing environments. Int J Plant Sci 164:S165–S184CrossRefGoogle Scholar
  2. Ackerly DD (2016) Conservatism and diversification of plant functional traits: evolutionary rates versus phylogenetic signal. Proc Natl Acad Sci 106(2):19699–19706Google Scholar
  3. Aguilar-Medrano R (2013) Body shape evolution of Chromis and Azurina species (Percifomes, Pomacentridae) of the eastern Pacific. Ann Biol 63:217–232Google Scholar
  4. Aguilar-Medrano R (2017) Ecomorphology and evolution of the pharyngeal apparatus of benthic damselfishes (Pomacentridae, subfamily Stegastinae). Mar Biol 164:21CrossRefGoogle Scholar
  5. Aguilar-Medrano R, Barber PH (2016) Ecomorphological diversification in reef fish of the genus Abudefduf. (Percifomes, Pomacentridae) Zoomorphology 135:103–114CrossRefGoogle Scholar
  6. Aguilar-Medrano R, Frédérich B, De Luna E, Balart EF (2011) Patterns of morphological evolution of the cephalic region in damselfishes (Perciformes: Pomacentridae) of the Eastern Pacific. Biol J Linn Soc 102:593–613CrossRefGoogle Scholar
  7. Aguilar-Medrano R, Frédérich B, Balart EF, De Luna E (2013) Diversification of the pectoral fin shape in damselfishes (Perciformes, Pomacentridae) of the Eastern Pacific. Zoomorphology 132:197–213CrossRefGoogle Scholar
  8. Aguilar-Medrano R, Frédérich B, Barber PH (2016) Modular diversification of the locomotor system in Damselfishes (Pomacentridae). J Morph 277:603–614CrossRefPubMedGoogle Scholar
  9. Aguilar‑Medrano R, Reyes‑Bonilla H, Polly PD (2015) Adaptive radiation of damselfishes (Perciformes, Pomacentridae) in the eastern Pacific. Mar Biol 162:2291–2303CrossRefGoogle Scholar
  10. Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) Second International Symposium on Information Theory. Akademi Kiado, Budapest, pp 267–281Google Scholar
  11. Allen GR (1991) Damselfishes of the world. Aquarium Systems, MelleGoogle Scholar
  12. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austr Ecol 26:32–46Google Scholar
  13. Bacon CD, Silvestro D, Jaramillo C, Smith BT, Chakrabarty P, Bacon AA (2015) Biological evidence supports an early and complex emergence of the Isthmus of Panama. Proc Natl Acad Sci 112:6110–6115CrossRefPubMedPubMedCentralGoogle Scholar
  14. Barel CDN (1983) Towards a constructional morphology of cichlid fishes (Teleostei, Perciformes). Neth J Zool 33:357–424CrossRefGoogle Scholar
  15. Beaulieu JM, Jhwueng DC, Boettiger C, O’Meara BC (2012) Modeling stabilizing selection: expanding the Ornstein–Uhlenbeck model of adaptive evolution. Evolution 66:2369–2383CrossRefPubMedGoogle Scholar
  16. Bellwood DR (1996) The Eocene fishes of Monte Bolca: the earliest coral reef fish assemblage. Coral Reefs 15:11–19CrossRefGoogle Scholar
  17. Bellwood DR, Sorbini L (1996) A review of the fossil record of the Pomacentridae (Teleostei: Labroidei) with a description of a new genus and species from the Eocene of Monte Bolca, Italy. Zool J Linn Soc 117:159–174CrossRefGoogle Scholar
  18. Bellwood DR, Wainwright PC (2002) The history and biogeography of fishes on coral reefs Chap. 1. In: Sale PF (ed) Coral reef fishes dynamics and diversity in a complex ecosystem. Academic Press, San Diego, pp 5–32CrossRefGoogle Scholar
  19. Bellwood DR, van Herwerden L, Konow N (2004) Evolution and biogeography of marine angelfishes (Pisces: Pomacanthidae). Mol Phyl Evol 33:140–165CrossRefGoogle Scholar
  20. Bermingham E, Lessios HL (1993) Rate variation of proteins and mitochondrial DNA evolution as revealed by sea urchins separated by the Isthmus of Panama. Proc Natl Acad Sci 90:2734–2738CrossRefPubMedPubMedCentralGoogle Scholar
  21. Bermingham E, McCafferty SS, Martin AP (1997) Fish biogeography and molecular clocks: perspectives from the Panamanian Isthmus. In: Kocher TD, Stepien CA (eds) Molecular systematics of fishes. Academic Press, New York, pp 113–128CrossRefGoogle Scholar
  22. Blomberg SP, Garland T Jr (2002) Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods. J Evol Biol 15:899–910CrossRefGoogle Scholar
  23. Bookstein FL (1991) Morphometric tools for landmark data geometry and biology. University Press, CambridgeGoogle Scholar
  24. Clarke TA (1971) Territory boundaries, courtship, and social behavior in the garibaldi, Hypsypops rubicunda (Pomacentridae). Copeia 2:295–299CrossRefGoogle Scholar
  25. Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143CrossRefGoogle Scholar
  26. Coates AG. Obando JA (1996) Geological evolution of the Central American Isthmus. In: Jackson JBC, Budd AF, Coates AG (eds) Evolution and environment in tropical America. University of Chicago Press, Chicago, pp 21–56Google Scholar
  27. Cooper JG (1863) On new genera and species of California fishes, number I. Proc Calif Acad Nat Sci 3:70–77Google Scholar
  28. Cooper WJ, Westneat MW (2009) Form and function of damselfish skull: rapid and repeated evolution into a limited number of trophic niches. BMC Evol Biol 9:24CrossRefPubMedPubMedCentralGoogle Scholar
  29. Croizat L, Nelson G, Rosen DE (1974) Centers of origin and related concepts. Syst Zool 23:265–287CrossRefGoogle Scholar
  30. Duque-Caro H (1990) Neogene stratigraphy, paleoeceanography and paleobiogeography in northwest South America and the evolution of Panama seaway. Palaeogeogr Palaeoclimatol Palaeoecol 7(3–4):203–234CrossRefGoogle Scholar
  31. Emery AR (1973) Comparative ecology and functional osteology of fourteen species of damselfish (Pisces: Pomacentridae) at Alligator Reef, Florida Keys. Bull Mar Sci 23:649–770Google Scholar
  32. Fransen CHJM (2002) Taxonomy, phylogeny, historical biogeography, and historical ecology of the genus Pontonia Latreille (Crustacea: Decapoda: Caridea: Palaemonidae). Zool Verhandel 336:1–433Google Scholar
  33. Fransen CHJM (2007) The influence of land barriers on the evolution of Pontoniine shrimps (Crustacea, Decapoda) living in association with molluscs and solitary ascidians. In: Renema W (ed) Biogeography, time and place: distribution, barriers and islands. Springer, Dordrecht, pp 103–116CrossRefGoogle Scholar
  34. Frédérich B, Pilet A, Parmentier E, Vandewalle P (2008) Comparative trophic morphology in eight species of damselfishes (Pomacentridae). J Morph 269:175–188CrossRefPubMedGoogle Scholar
  35. Frédérich B, Sorenson L, Santini F, Slater GJ, Alfaro ME (2013) Iterative ecological radiation and convergence during the evolutionary history of damselfishes (Pomacentridae). Am Nat 181(1):94–113CrossRefPubMedGoogle Scholar
  36. Froese R, Pauly D (2014) FishBase. World Wide Web electronic publication. http://www.fishbase.org (version 10/2013)
  37. Fulton CJ (2007) Swimming speed performance in coral reef fishes: Field validations reveal distinct functional groups. Coral Reefs 26:217–228CrossRefGoogle Scholar
  38. Goswami A, Polly PD (2010) Methods for studying morphological integration, modularity and covariance evolution. In: Alroy J, Hunt G (eds) Quantitative methods in paleobiology. The Paleontological Society Papers Series vol 16, pp 213 − 243 Google Scholar
  39. Glynn PW, Ault JS (2000) A biogeographic analysis and review of the far Eastern Pacific coral reef region. Coral Reefs 19:1–23CrossRefGoogle Scholar
  40. Greenfield DW, Woods LP (1980) Review of the deep-bodied species of Chromis (Pisces: Pomacentridae) from the East Pacific, with description of three new species. Copeia 1980(4):625–641CrossRefGoogle Scholar
  41. Grove JS, Gerzon D, Saa MD, Strang C (1986) Distribución y ecología de la familia Pomacentridae (Pisces) en las Islas Galapagos. Rev Biol Trop 34(1):127–140Google Scholar
  42. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological Statistics software package for education and data analysis. Palaeontol Electron 4(1):9Google Scholar
  43. Harmon LJ, Schulte JA, Larson A, Losos JB (2003) Tempo and mode of evolutionary radiation in iguanian lizards. Science 301(5635):961–964CrossRefPubMedGoogle Scholar
  44. Harmon L, Weir J, Brock C, Glor R, Challenger W (2008) GIEGER: Investigating evolutionary radiations. Bioinformatics 24:129–131CrossRefPubMedGoogle Scholar
  45. Holt RD (1987) Population dynamics and evolutionary processes: The manifold roles of habitat selection. Evol Ecol 1:331–347CrossRefGoogle Scholar
  46. Humphries CJ, Parenti LR (1999) Cladistic Biogeography, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  47. Hutchinson GE (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:415–427CrossRefGoogle Scholar
  48. Jaramillo C, Montes C, Cardona A, Silvestro D, Antonelli A, Bacon CD (2017) Comment (1) on “Formation of the Isthmus of Panama” by O’Dea et al. Sci Adv 3(6):e1602321CrossRefPubMedPubMedCentralGoogle Scholar
  49. Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464CrossRefPubMedGoogle Scholar
  50. Knowlton N, Weigt LA (1998) New dates and new rates for divergence across the Isthmus of Panama. Proc R Soc Lond 265:2257–2263CrossRefGoogle Scholar
  51. Kosman E, Leonard KJ (2005) Similarity coefficients for molecular markers in studies of genetic relationships between individuals for haploid, diploid, and polyploid species. Mol Ecol 14(2):415–424CrossRefPubMedGoogle Scholar
  52. Kozak KH, Wiens JJ (2006) Does niche conservatism drive speciation? A case study in North American salamanders. Evolution 60:2604–2621CrossRefPubMedGoogle Scholar
  53. Kuiper FK, Fisher L (1975) A Monte Carlo comparison of six clustering procedures. Biometrics 31:777–783CrossRefGoogle Scholar
  54. Lessios HA (1998) The first stage of speciation as seen in organisms separated by the Isthmus of Panama. In: Howard D, Berlocher S (eds) Endless forms: species and speciation. Oxford University Press, Oxford, pp 186–201Google Scholar
  55. Lessios HA, Kessing BD, Pearse JS (2001) Population structure and speciation in tropical seas: global phylogeography of the sea urchin Diadema. Evolution 55:955–975CrossRefPubMedGoogle Scholar
  56. Liem KF (1993) Ecomorphology of the Teleostean skull. In: Hanken J, Hall BK (eds) The skull: functional and evolutionary mechanisms. The University of Chicago Press, Chicago, pp 422–452Google Scholar
  57. Lobato FL, Barneche DR, Siqueira AC, Liedke AMR, Lindner A, Pie MR, Bellwood DR, Floeter SR (2014) Diet and diversification in the evolution of coral reef fishes. PLoS One 9(7):e102094CrossRefPubMedPubMedCentralGoogle Scholar
  58. Losos JB (2008) Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol Lett 11:995–1007CrossRefPubMedGoogle Scholar
  59. Marko PB (2002) Fossil calibration of molecular clocks and the divergence times of geminate species pairs separated by the Isthmus of Panama. Mol Biol Evol 19(11):2005–2021CrossRefPubMedGoogle Scholar
  60. Marko PB, Moran AL (2002) Correlated evolutionary divergence of egg size and a mitochondrial protein across the Isthmus of Panama. Evolution 56:1303–1309CrossRefPubMedGoogle Scholar
  61. Mojena R (1977) Hierarchical grouping methods and stopping rules: an evaluation. Comp J 20:359–363CrossRefGoogle Scholar
  62. Monteiro LR (1999) Multivariate regression models and geometric morphometrics: the search for causal factors in the analysis of shape. Syst Biol 48:192–199CrossRefPubMedGoogle Scholar
  63. Montes C, Cardona A, Jaramillo C, Pardo A, Silva JC, Valencia V, Ayala C, Pérez-Angel LC, Rodriguez-Parra LA, Ramirez V, Niño H (2015) Middle Miocene closure of the Central American Seaway. Science 348(6231):226–229CrossRefPubMedGoogle Scholar
  64. Nelson G, Platnick N (1981) Systematics and biogeography: cladistics and vicariance. Columbia University Press, New YorkGoogle Scholar
  65. O’Dea A, Lessios HA, Coates AG, Eytan RI, Restrepo-Moreno SA, Cione AL, Collins LS, de Queiroz A, Farris DW, Norris RD, Stallard RF, Woodburne MO, Aguilera O, Aubry MP, Berggren WA, Budd AF, Cozzuol MA, Coppard SE, Duque-Caro H, Finnegan S, Gasparini GM, Grossman EL, Johnson KG, Keigwin LD, Knowlton N, Leigh EG, Leonard-Pingel JS, Marko PB, Pyenson ND, Rachello-Dolmen PG, Soibelzon E, Soibelzon L, Todd JA, Vermeij GJ, Jackson JB (2016) Formation of the Isthmus of Panama. Sci Adv 2(8):e1600883CrossRefPubMedPubMedCentralGoogle Scholar
  66. Orme D, Freckleton RP, Thomas G, Petzoldt T, Fritz SA (2011) Caper: Comparative analyses of phylogenetics and evolution in R. http://r-forge.rproject.org/projects/caper. Accessed 15 Dec 2017
  67. Paradis E, Claude J, Strimmer K (2004) APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290CrossRefPubMedGoogle Scholar
  68. Pavlov DS, Kasumyan AO (2002) Feeding diversity in fishes: trophic classification of fish. J Ichthyol 42(2):S137–S159Google Scholar
  69. Pequeño G, Vargas L, Riedemann A (2005) La castañeta Chromis crusma (Valenciennes, 1833) en la costa de Valdivia, con comentarios sobre el género Chromis Cuvier, 1814, en aguas chilenas (Osteichthyes: Pomacentridae). IVEMAR 33(001):101–107Google Scholar
  70. Peterson AT, Soberon J, Sanchez-Corderon V (1999) Conservatism of niches in evolutionary time. Science 285:1265–1267CrossRefPubMedGoogle Scholar
  71. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2014) nlme: Linear and nonlinear mixed effects models. R Package Version 3.1–117. http://CRAN.R-project.org
  72. Price SA, Holzman R, Near TJ, Wainwright PC (2011) Coral reefs promote the evolution of morphological diversity and ecological novelty in labrid fishes. Ecol Lett 14:462–469CrossRefPubMedGoogle Scholar
  73. Pyron RA, Burbrink FT (2009) Lineage diversification in a widespread species: roles for niche divergence and conservatism in the common kingsnake. Lampropeltis getula. Mol Ecol 18:3443–3457CrossRefGoogle Scholar
  74. Quenouille B, Bermingham E, Planes S (2004) Molecular systematics of the damselfishes (Teleostei: Pomacentridae): Bayesian phylogenetic analyses of mitochondrial and nuclear DNA sequences. Mol Phylo Evol 31:62–68CrossRefGoogle Scholar
  75. R Core Team (2013) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/. Accessed 15 Dec 2017
  76. Revell LJ (2012) Phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 3:217–223CrossRefGoogle Scholar
  77. Rissler LJ, Apodaca JJ (2007) Adding more ecology into species delimitation: ecological niche models and phylogeography help define cryptic species in the black salamander (Aneides flavipunctatus). Syst Biol 56:924–942CrossRefPubMedGoogle Scholar
  78. Robertson DR, Allen GR (2015) Shorefishes of the Tropical Eastern Pacific: online information system. Version 2.0. Smithsonian Tropical Research Institute, BalboaGoogle Scholar
  79. Robertson DR, Cramer KL (2009) Shore fishes and biogeographic subdivisions of the Tropical Eastern Pacific. Mar Ecol Progr Ser 380:1–17CrossRefGoogle Scholar
  80. Rocha LA, Myers R (2015) Abudefduf saxatilis. The IUCN Red List of Threatened Species 2015: e.T188581A1896808. http://dx.doi.org/10.2305. Accessed 15 Dec 2017
  81. Rohlf FJ (1993) Relative warps analysis and an example of its application to mosquito wings. In: Marcus LF, Bello E, Garcia-Valdecasas A (eds) Contributions to Morphometrics. Monografıas del Museo Nacional de Ciencias Naturales, CSIC, Madrid, pp 139–151Google Scholar
  82. Rohlf FJ (2014a) The tps series of software. HYSTRIX 26(1): 2015Google Scholar
  83. Rohlf FJ (2014b) Suny stonny brook. http://life.bio.sunysb.edu/morph/. Accessed 15 Dec 2017
  84. Rohlf FJ, Slice D (1990) Extension of the procrustes method for the optimal superposition of landmarks. Syst Zool 39:40–59CrossRefGoogle Scholar
  85. Rosen DE (1976) A vicariance model of Caribbean biogeography. Syst Zool 24:431–464CrossRefGoogle Scholar
  86. Rosen DE (1978) Vicariant patterns and historical explanations in biogeography. Syst Zool 27:159–188CrossRefGoogle Scholar
  87. Schluter D (2000) The Ecology of Adaptive Radiations. Oxford University Press, OxfordGoogle Scholar
  88. Schmitz L, Wainwright PC (2011) Ecomorphology of the eyes and skull in zooplanktivorous labrid fishes. Coral Reefs 30:415–428CrossRefGoogle Scholar
  89. Sneath P, Sokal R (1973) Numerical taxonomy: the principles and practice of numerical classification. W.H. Freeman, San FranciscoGoogle Scholar
  90. Sokal RR, Rohlf FJ (1962) The comparisons of dendrograms by objective methods. Taxon 11:33–40CrossRefGoogle Scholar
  91. Steeves TE, Anderson J, Friesen L (2005) The Isthmus of Panama: a major physical barrier to gene flow in a highly mobile pantropical seabird. J Evol Biol 18:1000–1008CrossRefPubMedGoogle Scholar
  92. Ward J (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236–244CrossRefGoogle Scholar
  93. Wainwright PC, Bellwood DR (2002) Ecomorphology of feeding in coral reef fishes. In: Sale PF (ed) Coral reef fishes, dynamics and diversity in a complex ecosystem. Elseviere Sciences, California, pp 33–55CrossRefGoogle Scholar
  94. Wainwright PC, Bellwood DR, Weastneat MW (2002) Ecomorphology of locomotion in labrid fishes. Environ Biol Fish 65:47–62CrossRefGoogle Scholar
  95. Walker JA, Weastneat MW (2002) Performance limits of labriform propulsion and correlates with fin shape and motion. J Exp Biol 205:177–187PubMedGoogle Scholar
  96. Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Ann Rev Ecol Syst 33:475–505CrossRefGoogle Scholar
  97. Wiens JJ (2004) Speciation and ecology revisited: phylogenetic niche conservatism and the origin of species. Evolution 58:193–197CrossRefPubMedGoogle Scholar
  98. Wiens JJ, Ackerly DD, Allen AP, Anacker BL, Buckley LB, Cornell HV, Damschen EI, Davies TJ, Grytnes JA, Harrison SP, Hawkins BA, Holt RD, McCain CM, Stephens PR (2010) Niche conservatism as an emerging principle in ecology and conservation biology. Ecol Lett 10:1310–1324CrossRefGoogle Scholar
  99. Wiley EO (1988) Vicariance biogeography. Ann Rev Ecol Syst 19:513–542CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Laboratorio de Ictiología, Facultad de Ciencias BiológicasUniversidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMexico

Personalised recommendations