, Volume 136, Issue 2, pp 251–265 | Cite as

Phylogenetic analysis of landmark data and the morphological evolution of cranial shape and diets in species of Myotis (Chiroptera: Vespertilionidae)

Original paper


Species in genus Myotis exhibit a pattern of cranial variation associated with insectivorous, facultative piscivorous, and truly piscivorous diets, which has not been studied in a phylogenetic context. Variation in landmark configurations of five cranial structures in 22 Myotis species was analyzed with phylogenetic methods to infer evolution of shape. Our goals were to detect changes in cranial morphology and to correlate these with concerted changes among diets. A reference phylogeny was estimated using a combined data matrix with previously available Cyt-b and RAG2 sequences and our five configurations of landmarks. We included the insectivorous Kerivoula papillosa Temminck, 1840, Noctilio leporinus Linnaeus, 1758 (piscivorous), and N. albiventris Desmarest, 1818 (insectivorous) as out-groups. The optimization of five landmark configurations on the combined phylogeny shows no evidence of convergent shape changes among species with similar piscivorous diets. Our findings document that facultative piscivory does not imply the same particular morphotype. In four cranial features, there is small shape change between estimated ancestral shapes and seven observed descendant shapes for the piscivorous species. Only the mandible shows major changes from insectivorous ancestors to facultative piscivorous or piscivorous Myotis.


Piscivory Geometric morphometrics Myotis Phylogenetic morphometrics 

Supplementary material

435_2017_345_MOESM1_ESM.docx (99 kb)
Supplementary material 1 (DOCX 99 KB)
435_2017_345_MOESM2_ESM.txt (117 kb)
Supplementary material 2 (TXT 116 KB)
435_2017_345_MOESM3_ESM.docx (132 kb)
Supplementary material 3 (DOCX 132 KB)
435_2017_345_MOESM4_ESM.pdf (187 kb)
Supplementary material 4 (PDF 187 KB)
435_2017_345_MOESM5_ESM.docx (100 kb)
Supplementary material 5 (DOCX 100 KB)
435_2017_345_MOESM6_ESM.docx (50 kb)
Supplementary material 6 (DOCX 50 KB)
435_2017_345_MOESM7_ESM.pdf (190 kb)
Supplementary material 7 (PDF 190 KB)


  1. Aihartza J, Almenar D, Salsamendi E, Goiti U, Garin I (2008) Fishing behavior in the long-fingered bat Myotis capaccinii (Bonaparte, 1837): an experimental approach. Acta Chiropterologica 10: 287–301Google Scholar
  2. Baker RH (2002) Comparative methods. In: DeSalle R, Giribet G, Wheeler W (eds) Techniques in molecular systematics and evolution. Birkhäuser, Basel, pp 146–161CrossRefGoogle Scholar
  3. Benda P, Tsulina K (2000) Taxonomic revision of Myotis mystacinus group (Mammalia: Chiroptera) in the western Paleartic. Acta Societatis Zoologicae Bohemicae 64: 331–398Google Scholar
  4. Blood BR, Clark MK (1998) Myotis vivesi. Mamm Species 588: 1–5CrossRefGoogle Scholar
  5. Burles DW, Brigham RM, Ring RA, Reimchen TE (2008) Diet of two insectivorous bats, Myotis lucifugus and Myotis keenii, in relation to arthropod abundance in a temperate Pacific Northwest rainforest environment. Can J Zool 87:132–138CrossRefGoogle Scholar
  6. Catalano SA, Goloboff PA (2012) Simultaneously mapping and superimposing landmark configurations with parsimony as optimality criterion. Syst Biol 61: 1–9CrossRefGoogle Scholar
  7. Catalano SA, Torres A (2017). Phylogenetic inference based on landmark data in 41 empirical data sets. Zool Scripta 46: 1–11CrossRefGoogle Scholar
  8. Catalano SA, Goloboff PA, Giannini NP (2010) Phylogenetic morphometrics (I): the use of landmark data in a phylogenetic framework. Cladistics 26:539–549CrossRefGoogle Scholar
  9. Dietz C, Von Helversen O (2004) Illustrated identification key to the bats of Europe. Tuebingen and Erlangen, Germany. Electronic publication. http://biocenosi.dipbsf.uninsubria.it/didattica/bat_key1.pdf. Accessed 30 June 2013
  10. Dumont E, Herrel A (2003) The effects of gape angle and bite point on bite force in bats. J Exp Biol 206:2117–2123CrossRefPubMedGoogle Scholar
  11. Dumont ER, Dávalos L, Goldberg A, Santana SE, Rex K, Voigt CC (2012) Morphological innovation, diversification and invasion of a new adaptive zone. Proc R Soc Lond B Biol Sci 279:1797–1805CrossRefGoogle Scholar
  12. Fenton B, Bogdanowicz W (2002) Relationships between external morphology and foraging behaviour: bats in the genus Myotis. Can J Zool 80:1004–1013CrossRefGoogle Scholar
  13. Findley JS (1972) Phenetic relationships among bats of the genus Myotis. Syst Zool 21:31–52CrossRefGoogle Scholar
  14. Flannery T (1995) Mammals of the South-West Pacific, Moluccan Islands. Australian Museum, Reed Books, ChatswoodGoogle Scholar
  15. Freeman PW (1979) Specialized insectivory: beetle-eating and moth-eating molossid bats. J Mammal 60:467–479CrossRefGoogle Scholar
  16. Freeman PW (1981) Correspondence of food habits and morphology in insectivorous bats. J Mammal 62:166–171CrossRefGoogle Scholar
  17. Freeman PW (1984) Functional cranial analysis of large animalivorous bats (Microchiroptera). Biol J Linn Soc 21: 387–408CrossRefGoogle Scholar
  18. Ghazali M, Dzeverin I (2013) Correlations between hardness of food and craniodental traits in nine Myotis species (Chiroptera, Vespertilionidae). Vestnik zoologii 47:67–76CrossRefGoogle Scholar
  19. Ghazali M, Moratelli R, Dzeverin I (2016) Ecomorph evolution in Myotis (Vespertilionidae, Chiroptera). J Mammal Evol. doi:10.1007/s10914-016-9351-z Google Scholar
  20. Goloboff P (1991) Homoplasy and the choice among cladograms. Cladistics 7:215–232CrossRefGoogle Scholar
  21. Goloboff PA, Catalano SA (2016) TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics 32:221–238CrossRefGoogle Scholar
  22. Goloboff P, Farris J, Nixon KC (2015) T.N.T.- tree analysis using new technology. http://www.zmuc.dk/public/phylogeny/TNT
  23. Grandcolas P, Guilbert E, Robillard T, D’Haese C, Murienne J, Legendre F (2004) Mapping characters on a tree with or without the outgroups. Cladistics 20:579–582CrossRefGoogle Scholar
  24. Gunz P, Mitteroecker P (2013) Semilandmarks: a method for quantifying curves and surfaces. Hystrix Italian J Mammal 24: 103–109Google Scholar
  25. Herrel A, De Smet A, Aguirre LF, Aerts P (2008) Morphological and mechanical determinants of bite force in bats: do muscles matter? J Exp Biol 211:86–91CrossRefPubMedGoogle Scholar
  26. Herring SW, Herring SE. 1974. The superficial masseter and gape in mammals. Am Nat 108: 561–576CrossRefGoogle Scholar
  27. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066CrossRefPubMedPubMedCentralGoogle Scholar
  28. Klingenberg CP, Gidaszewski NA (2010) Testing and quantifying phylogenetic signals and homoplasy in morphometric data. Syst Biol 59: 245–261CrossRefPubMedGoogle Scholar
  29. Larsen RJ, Larsen PA, Genoways HH, Catzeflis FM, Geluso K, Kwiecinski GG, Pedersen SC, Simal F, Baker RJ (2012) Evolutionary history of Caribbean species of Myotis with evidence of a third Lesser Antillean endemic. Mamm Biol 77: 124–134CrossRefGoogle Scholar
  30. LaVal RK (1973) A revision of the Neotropical bats of the genus Myotis, vol. 15. Natural History Museum, Los Angeles CountyGoogle Scholar
  31. Law N, Urquhart CA (2000) Diet of the large-footed Myotis macropus at a forest stream roost in northern New South Wales. Aust Mammal 22:121–124CrossRefGoogle Scholar
  32. Lewis-Oritt N, Van Den Bussche RA, Baker RJ (2001) Molecular evidence for evolution of piscivory in Noctilio (chiroptera: noctilionidae). J Mammal 82:748–759CrossRefGoogle Scholar
  33. López-González C, Presley SJ, Owen RD, Willig MR (2001) Taxonomic status of Myotis (Chiroptera:Vespertilionidae) in Paraguay. J Mammal 82:138–160CrossRefGoogle Scholar
  34. Maddison WP (2000) Testing character correlation using pairwise comparisons on a phylogeny. J Theor Biol 202:195–204CrossRefPubMedGoogle Scholar
  35. Maddison WP (2015) Pairwise comparisons package for Mesquite, Version 3.04. http://mesquiteproject.org
  36. Monteiro LR, Nogueira MR (2009) Adaptive radiations, ecological specialization, and the evolutionary integration of complex morphological structures. Evol Int J Org Evol 64:724–744CrossRefGoogle Scholar
  37. Nixon K (1999) The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics 15:407–414CrossRefGoogle Scholar
  38. Nixon KC (2002) WinClada Version 1.00.08 Published by the author, IthacaGoogle Scholar
  39. Nixon KC, Carpenter JM (2012) On homology. Cladistics 28:160–169CrossRefGoogle Scholar
  40. Nogueira RM, Monteiro LR, Peracchi AL, De Araújo FB (2005) Ecomorphological analysis of the masticatory apparatus in the seed-eating bats, genus Chiroderma (Chiroptera:Phyllostomidae). J Zool 266:355–364CrossRefGoogle Scholar
  41. Nogueira RM, Peracchi AL, Monteiro LR (2009) Morphological correlates of bite force and diet in the skull and mandible of phyllostomid bats. Funct Ecol 23:715–723CrossRefGoogle Scholar
  42. Norberg UM, Rayner JMV (1987) Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Phil Trans R Soc 316: 335–427CrossRefGoogle Scholar
  43. Pagel M (1994) Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proc R Soc Lond B Biol Sci 255: 37–45CrossRefGoogle Scholar
  44. Porto A, Oliveira FB, de Shirai LT, Conto VD, Marroig G (2009) The evolution of modularity in the mammalian skull I: morphological integration patterns and magnitudes. Evol Biol 36:118–135CrossRefGoogle Scholar
  45. Rohlf FJ (2008) tpsDig software, ver. 2.12. Computer program and documentation. Department of Ecology and Evolution, State University of New York at Stony BrookGoogle Scholar
  46. Ruedi M, Mayer F (2001) Molecular systematics of bats of the genus Myotis (Vespertilionidae) suggests deterministic ecomorphological convergences. Mol Phylogenet Evol 21:436–448. doi:10.1006/mpev.2001.1017 CrossRefPubMedGoogle Scholar
  47. Ruedi M, Stadelmann B, Gager Y, Douzery EJP, Francis CM, Lin L, Guillén-Servent A, Cibois A (2013) Molecular phylogenetic reconstructions identify East Asia as the cradle for the evolution of the cosmopolitan genus Myotis (Mammalia, Chiroptera). Mol Phylogenet Evol 69:437–449CrossRefPubMedGoogle Scholar
  48. Santana S, Dumont E, Davis JL (2010) Mechanics of bite force production and its relationship to diet in bats. Funct Ecol 24:776–784CrossRefGoogle Scholar
  49. Schuh RT (2000) Biological systematics: principles and applications. Cornell University Press, New YorkGoogle Scholar
  50. Sheets HD (2014) IMP-integrated morphometrics package. Ver 8. [Computer software and manual]. http://www3.canisius.edu/~sheets/morphsoft.html
  51. Siemers BM, Stilz P, Schnitzler H-U (2001) The acoustic advantage of hunting at low heights above water: behavioral experiments on the European ‘‘trawling’’ bats Myotis capaccinii, M. dasycneme and M. daubentonii. J Exp Biol 204:3843–3854PubMedGoogle Scholar
  52. Simmons NB (2005) Order Chiroptera. In: Wilson DE, Reeder DM (eds) Mammal species of the world. a taxonomic and geographic reference. Johns Hopkins University Press, Washington, pp 312–529Google Scholar
  53. Stadelmann B, Herrera LG, Arroyo-Cabrales J, Flores-Martinez JJ, May BP, Ruedi M (2004) Molecular systematics of the fishing bat Myotis (pizonyx) vivesi. J Mammal 85:133–139CrossRefGoogle Scholar
  54. StatSoft (2010) STATISTICA (data analysis software system), ver 10. [Computer software and manual]. StatSoft Inc, TulsaGoogle Scholar
  55. Swartz SM, Freeman PW, Stockwell EF (2003) Ecomorphology of bats: comparative and experimental approaches relating structural design to ecology. In: Kunz TH, Fenton MB (eds) Bat ecology. University of Chicago Press, Chicago, pp 580–621Google Scholar
  56. Van Cakenberghe V, Herrel A, Aguirre LF (2002) Evolutionary relationships between cranial shape and diet in bats (Mammalia: Chiroptera). In: Aerts P, D’aout K, Herrel A, Van Damme R (eds) Topics in funtional and ecological vertebrate morphology. Shaker Publishing, Maastricht, pp 205–223Google Scholar
  57. Veselka N, McErlain DD, Holdsworth DW, Eger JL, Chhem RK, Mason MJ, Brain KL, Faure PA, Fenton MB (2010) A bony connection signals laryngeal echolocation in bats. Nature 463:939–942CrossRefPubMedGoogle Scholar
  58. Wenzel J (2002) Phylogenetic analysis: the basic method. In: DeSalle R, Giribet G, Wheeler W (eds) Techniques in molecular systematics and evolution. Birkhäuser, Basel, pp 4–30CrossRefGoogle Scholar
  59. Wetterer AL, Rockman MV, Simmons NB (2000) Phylogeny of Phyllostomid bats (Mammalia: Chiroptera): Data from diverse morphological systems, sex, chromosomes, and restriction sites. Bull Am Mus Nat Hist 248:1–200CrossRefGoogle Scholar
  60. Whitaker J, Findley JS (1980) Foods eaten by some bats from Costa Rica and Panama. J Mammal 61:540–544CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Posgrado en Ciencias Biológicas, Instituto de BiologíaUniversidad Nacional Autónoma de MéxicoMéxicoMéxico
  2. 2.Biodiversidad y Sistemática, Instituto de Ecología, A.C.XalapaMéxico

Personalised recommendations