Skip to main content
Log in

Structural analysis of the branchiae and dorsal cirri in Eurythoe complanata (Annelida, Amphinomida)

  • Original paper
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract

In many polychaete species filamentous, pectinate or arborescence branchiae may be present. In species with well-developed parapodia, such as Amphinomidae and Eunicidae, they are often associated with the notopodia. Mostly they arise close to the dorsal cirrus. Whereas the branchiae are regarded as the main site for respiration, the cirri function as segmentally repeated mechanosensory and chemosensory organs. To date, ultrastructural studies exist only for a limited number of polychaete species, especially with respect to the sensory appendages of parapodia. Therefore, the branchiae and dorsal cirri were investigated with CLSM, SEM and TEM in a species of Amphinomidae, Eurythoe complanata. These studies revealed that the branchiae are complex organs comprising blood vessels, highly developed circular and longitudinal musculature, neurite bundles, numerous sensory cells and a specialized epidermis and cuticle. The cuticle is thinner than on the trunk, and the blood spaces at the presumed respiratory sites are covered by cell processes, about 130–350 nm thin, thus providing a short diffusion distance. Ventilation is facilitated by a continuous, longitudinal ciliary band. In contrast to the uniform sensory equipment of the branchiae, several types of receptor cells are present on the cirri. Besides two different collar receptors as well as other uniciliated and multiciliated sensory cells, the basal joint of the cirri comprises a few phaosomous photoreceptor cells. These are of the rhabdomeric type, and although ectopic light sensitivity was known for other species, herein such cells are structurally characterized in polychaetes for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arendt D, Tessmar-Raible K, Synman H, Dorresteijn A, Wittbrodt J (2004) Ciliary photoreceptors with a vertebrate-type opsin in an invertebrate brain. Science 306:869–871

    Article  CAS  PubMed  Google Scholar 

  • Arendt D, Hausen H, Purschke G (2009) The ‘division of labour’ model of eye evolution. Philos Trans R Soc B Biol Sci 364:2809–2817

    Article  Google Scholar 

  • Backfisch B, Rajan VBV, Fischer RM, Lohs C, Arboleda E, Tessmar-Raible K, Raible F (2013) Stable transgenesis in the marine annelid Platynereis dumerilii sheds new light on photoreceptor evolution. Proc Natl Acad Sci USA 110:193–198

    Article  CAS  PubMed  Google Scholar 

  • Boilly-Marer Y (1972) Étude ultrastructurale des cirres parapodiaux de Nereidiens atoques (Annélides, Polychètes). Z Zellforsch mikrosk Anat 131:309–327

    Article  CAS  PubMed  Google Scholar 

  • Bullock TH (1965) Annelida. In: Bullock TH, Horridge GA (eds) Structure and function in the nervous systems of invertebrates. Freeman & Co, San Francisco, pp 661–789

    Google Scholar 

  • Clark RB (1956) The blood vascular system of Nephtys (Annelida, Polychaeta). Q J Microsc Sci 97:235–249

    Google Scholar 

  • Döring C, Gosda J, Tessmar-Raible K, Hausen H, Arendt D, Purschke G (2013) Evolution of clitellate phaosomes from rhabdomeric photoreceptor cells of polychaetes—a study in the leech Helobdella robusta (Annelida, Sedentaria, Clitellata). Front Zool 10(52):1–14

    Google Scholar 

  • Dorsett DA, Hyde R (1969) The fine structure of the compound sense organs on the cirri of Nereis diversicolor. Z Zellforsch mikrosk Anat 97:512–527

    Article  CAS  PubMed  Google Scholar 

  • Eakin RM, Hermans CO (1988) Eyes. In: Westheide W, Hermans CO (eds) The ultrastructure of Polychaeta. Microfauna Marina, vol 4, pp 135–156

  • Ermak TH, Eakin RM (1976) Fine structure of the cerebral and pygidial ocelli in Chone ecaudata (Polychaeta: Sabellidae). J Ultrastruct Res 54:243–260

    Article  CAS  PubMed  Google Scholar 

  • Fauchald K (1977) The polychaete worms: definitions and keys to the orders, families and genera. Nat Hist Mus Los Angel Cty 28:1–190

    Google Scholar 

  • Fransen ME (1988) Coelomic and vascular systems. In: Westheide W, Hermans CO (eds) The ultrastructure of Polychaeta. Microfauna Marina, vol 4, pp 199–213

  • Gardiner SL (1988) Respiratory and feeding appendages. In: Westheide W, Hermans CO (eds) The ultrastructure of Polychaeta. Microfauna Marina ,vol 4, pp 37–43

  • Gardiner SL (1992) Polychaeta: General organization, integument, musculature, coelom and vascular system. In: Harrison FW, Gardiner SL (eds) Microscopic anatomy of invertebrates. Annelida, vol 7. Wiley-Liss, Chichester, pp 19–52

    Google Scholar 

  • George JD, Hartmann-Schröder G (1985) Polychaetes: Britisch Amphinomida, Spinterida & Eunicida. In: Kermack DM, Barnes RSK (eds) Synopses of the British Fauna, vol 32. Brill & Backhuys, London, pp 1–221

    Google Scholar 

  • Hauenschild C, Fischer A (1969) Platynereis dumerilii. Mikroskopische Anatomie, Fortpflanzung, Entwicklung. In: Czihak G (ed) Großes Zoologisches Praktikum, vol 10b. Gustav Fischer, Stuttgart, pp 1–55

    Google Scholar 

  • Hausen H (2005) Comparative structure of the epidermis in polychaetes (Annelida). Hydrobiologia 535(536):25–35

    Google Scholar 

  • Hessling R, Purschke G (2000) Immunohistochemical (CLSM) and ultrastructural analysis of the central nervous system and sense organs in Aeolosoma hemprichi (Annelida, Aeolosomatidae). Zoomorphology 120:65–78

    Article  Google Scholar 

  • Horridge GA (1963) Proprioceptors, bristle receptors, efferent sensory impulses, neurofibrils and number of axons in the parapodial nerve of the polychaete Harmothoe. Proc R Soc Lond B Biol Sci 157:199–222

    Article  Google Scholar 

  • Huusgaard RS, Vismann B, Kühl M, Macnaugton M, Colmander V, Rouse GW, Glover AG, Dahlgren T, Worsaae K (2012) The potent respiratory system of Osedax mucofloris (Siboglinidae, Annelida)—a prerequisite for the origin of bone-eating Osedax? Plos ONE 7:e35975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jouin C, Gaill F (1990) Gills of hydrothermal vent annelids: structure, ultrastructure and functional implications in two alvinellid species. Prog Oceanogr 24:59–69

    Article  Google Scholar 

  • Jouin C, Toulmond A (1989) The ultrastructure of the gill of the lugworm Arenicola marina (L.) (Annelida, Polychaeta). Acta Zool (Stockholm) 70:121–129

    Article  Google Scholar 

  • Jouin C, Tchernigovtzeff C, Baucher MF, Toulmond A (1985) Fine structure of probable mechano- and chemoreceptors in the caudal epidermis of the lugworm Arenicola marina (Annelida, Polychaeta). Zoomorphology 105:76–82

    Article  Google Scholar 

  • Jouin-Toulmond C, Hourdez S (2006) Morphology, ultrastructure and functional anatomy of the branchial organ of Terebellides stroemii (Polychaeta: Trichobranchidae) and remarks on the systematic position of the genus Terebellides. Cah Biol Mar 47:287–299

    Google Scholar 

  • Jouin-Toulmond C, Augustin D, Desbruyères D, Toulmond A (1996) The gas transfer system in alvinellids (Annelida, Polychaeta, Terebellidae). Anatomy and ultrastructure of the anterior circulatory system and characterization of a coelomic, intracellular haemoglobin. Cah Biol Mar 37:135–151

    Google Scholar 

  • Kristensen RM, Nørrevang A (1982) Description of Psammodrilus aedificator sp. n. (Polychaeta), with notes on the Arctic interstitial fauna of Disko Island, W. Greenland. Zool Scr 11:265–279

    Article  Google Scholar 

  • Lawry JV Jr (1967) Structure and function of the parapodial cirri of the polynoid polychaete, Harmothoë. Z Zellforsch mikrosk Anat 82:345–361

    Article  Google Scholar 

  • Menendez A, Arias JL, Tolivia D, Alvarez-Uria M (1984) Ultrastructure of gill epithelial cells of Diopatra neapolitana (Annelida, Polychaeta). Zoomorphology 104:304–309

    Article  Google Scholar 

  • Nicoll PA (1954) The anatomy and behavior of the vascular system in Nereis virens and Nereis limbata. Biol Bull 106:69–82

    Article  Google Scholar 

  • Nørrevang A (1974) Photoreceptors of the phaosome (hirudinean) type in a pogonophore. Zool Anz 193:297–304

    Google Scholar 

  • O’Donnell MJ (1997) Mechanisms of excretion and ion transport in invertebrates. In: Dantzler WH (ed) Comparative physiology. Oxford University Press, New York, pp 1207–1289

    Google Scholar 

  • Purschke G (1993) Structure of the prostomial appendages and the central nervous system in the Protodrilida (Polychaeta). Zoomorphology 113:1–20

    Article  Google Scholar 

  • Purschke G (2003) Ultrastructure of phaosomous photoreceptors in Stylaria lacustris (Naididae, “Oligochaeta”, Clitellata) and their importance for the position of the Clitellata in the phylogenetic system of the Annelida. J Zool Syst Evolut Res 41:100–108

    Article  Google Scholar 

  • Purschke G (2005) Sense organs in polychaetes (Annelida). Hydrobiologia 535(536):53–78

    Google Scholar 

  • Purschke G (2016) Annelida: basal groups and Pleistoannelida. In: Schmidt-Rhaesa A, Harzsch S, Purschke G (eds) Structure and evolution of invertebrate nervous systems. Oxford University Press, Oxford, pp 254–312

    Google Scholar 

  • Purschke G, Hausen H (2007) Lateral organs in sedentary polychaetes (Annelida)—ultrastructure and phylogenetic significance of an insufficiently known sense organ. Acta Zool (Stockholm) 88:23–39

    Article  Google Scholar 

  • Purschke G, Jouin-Toulmond C (1993) Ultrastructure of presumed ocelli in Parenterodrilus taenioides (Polychaeta, Protodrilidae) and their phylogenetic significance. Acta Zool (Stockholm) 74:247–256

    Article  Google Scholar 

  • Purschke G, Nowak K (2015) Ultrastructure of pigmented eyes in Dorvilleidae (Annelida, Errantia, Eunicida) and their importance for understanding the evolution of eyes in polychaetes. Acta Zool (Stockholm) 96:67–81

    Article  Google Scholar 

  • Purschke G, Arendt D, Hausen H, Müller MCM (2006) Photoreceptor cells and eyes in Annelida. Arthropod Struct Dev 35:211–230

    Article  PubMed  Google Scholar 

  • Purschke G, Bleidorn C, Struck T (2014) Systematics, evolution and phylogeny of Annelida—a morphological perspective. Mem Mus Vic 71:247–269

    Google Scholar 

  • Ramirez MD, Speiser DI, Pankey MS, Oakley TH (2011) Understanding the dermal light sense in the context of integrative photoreceptor cell biology. Vis Neurosci 28:265–279

    Article  PubMed  Google Scholar 

  • Randel N, Bezares-Calderón LA, Gühmann M, Shahidi R, Jékely G (2013) Expression dynamics and protein localization of rhabdomeric opsins in Platynereis larvae. Integr Comp Biol 53:7–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rouse GW, Pleijel F (2001) Polychaetes. Oxford University Press, Oxford

    Google Scholar 

  • Ruppert EE (1991) Introduction to the aschelminth phyla: a consideration of mesoderm, body cavities, and cuticle. In: Harrisson FW, Ruppert EE (eds) Microscopic anatomy of invertebrates. Wiley-Liss, New York, pp 1–17

    Google Scholar 

  • Schlawny A, Grünig C, Pfannenstiel HD (1991) Sensory and secretory cells of Ophryotrocha puerilis (Polychaeta). Zoomorphology 110:209–215

    Article  Google Scholar 

  • Schmidt-Rhaesa A (2007) The evolution of organ systems. Oxford University Press, Oxford

    Book  Google Scholar 

  • Shigeno S, Ogura A, Mori T, Toyohara H, Yoshida T, Tsuchida S, Fujikura K (2014) Sensing deep extreme environments: the receptor cell types, brain centers, and multi-layer neural packaging of hydrothermal vent endemic worms. Front Zool 11(82):1–19

    Google Scholar 

  • Southward EC, Schulze A, Gardiner SL (2005) Pogonophora (Annelida): form and function. Hydrobiologia 535(536):227–251

    Google Scholar 

  • Storch V, Alberti G (1978) Ultrastructural observations on the gills of polychaetes. Helgol Meeresunter 31:169–179

    Article  Google Scholar 

  • Storch V, Gaill F (1986) Ultrastructural observations on feeding appendages and gills of Alvinella pompejana (Annelida, Polychaeta). Helgol Meeresunter 40:309–319

    Article  Google Scholar 

  • Storch V, Schlötzer-Schrehardt U (1988) Sensory structures. In: Westheide W, Hermans CO (eds) The ultrastructure of Polychaeta. Microfauna Marina, vol 4, pp 121–133

  • Struck TH, Paul C, Hill N, Hartmann S, Hoesel C, Kube M, Lieb B, Meyer A, Tiedemann R, Purschke G, Bleidorn C (2011) Phylogenomic analyses unravel annelid evolution. Nature 471:95–98

    Article  CAS  PubMed  Google Scholar 

  • Struck TH, Golombek A, Weigert A, Franke FA, Westheide W, Purschke G, Bleidorn C, Halanych KM (2015) The evolution of annelids reveals two adaptive routes to the interstitial realm. Curr Biol 25:1993–1999

    Article  CAS  PubMed  Google Scholar 

  • Suschenko D, Purschke G (2009) Ultrastructure of pigmented adult eyes in errant polychaetes (Annelida): implications for annelid evolution. Zoomorphology 128:75–96

    Article  Google Scholar 

  • Thiel D, Hugenschütt M, Meyer H, Paululat A, Quijada-Rodriguez AR, Purschke G, Weihrauch D (2016) Ammonia excretion in the marine polychaete Eurythoe complanata (Annelida). J Exp Biol. doi:10.1242/jeb.145615

    PubMed  Google Scholar 

  • Todt C, Tyler S (2007) Ciliary receptors associated with the mouth and pharynx of Acoela (Acoelomorpha): a comparative ultrastructural study. Acta Zool (Stockholm) 88:41–58

    Article  Google Scholar 

  • Verger-Bocquet M (1981) Étude comparative, au niveau infrastructural, entre l’oeil de souche et les taches oculaires du stolon chez Syllis spongicola (Annélide, Polychète). Arch zool exp gén 122:253–258

    Google Scholar 

  • Verger-Bocquet M (1992) Polychaeta: sensory structures. In: Harrison FW, Gardiner SL (eds) Microscopic anatomy of invertebrates, vol 7., AnnelidaWiley-Liss, Chichester, pp 181–196

    Google Scholar 

  • Weigert A, Helm C, Meyer M, Nickel B, Arendt D, Hausdorf B, Santos SR, Halanych KM, Purschke G, Bleidorn C, Struck TH (2014) Illuminating the base of the annelid tree using transcriptomics. Mol Biol Evol 31:1391–1401

    Article  CAS  PubMed  Google Scholar 

  • Welsch U, Storch V, Richards KS (1984) Epidermal cells. In: Bereiter-Hahn J, Matoltsy AG, Richards KS (eds) Biology of the integument, vol 1., InvertebratesSpringer, Berlin, pp 269–296

    Chapter  Google Scholar 

  • Westheide W (1997) The direction of evolution within the Polychaeta. J Nat Hist 31:1–15

    Article  Google Scholar 

  • Westheide W (2008) Polychaetes: interstitial families. In: Crothers JH, Hayward PJ (eds) Synopses of the British fauna, vol 44, 2nd edn. Field Studies Council, Shrewsbury, pp 1–169

    Google Scholar 

  • Westheide W, Purschke G (1988) Organism processing. In: Higgins RP, Thiel H (eds) Introduction to the study of meiofauna. Smithsonian Institution Press, Washington, pp 146–160

    Google Scholar 

  • Wilkens V, Purschke G (2009) Pigmented eyes, photoreceptor-like sense organs and central nervous system in the polychaete Scoloplos armiger (Orbiniidae, Annelida) and their phylogenetic importance. J Morphol 270:1–15

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the head of our department, Prof Dr. A. Paululat, Osnabrueck, for various kinds of support including hospitality of one of us (DW) and discussions. Thanks are also due to K. Etzold and W. Mangerich, Osnabrueck, for various kinds of technical assistance, particularly for introducing MH and LO to electron microscopy techniques. The project was in part funded by the NSERC (DW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter Purschke.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

We neither used endangered species nor were the investigated animals collected in protected areas; instead the animals stem from a laboratory culture. All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Purschke, G., Hugenschütt, M., Ohlmeyer, L. et al. Structural analysis of the branchiae and dorsal cirri in Eurythoe complanata (Annelida, Amphinomida). Zoomorphology 136, 1–18 (2017). https://doi.org/10.1007/s00435-016-0336-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00435-016-0336-5

Keywords

Navigation