Calcitic microlens arrays in Archaster typicus: microstructural evidence for an advanced photoreception system in modern starfish


Recent studies have shown that in some light-sensitive species of an brittlestar (Asteroidea, Echinodermata), the upper surface of the dorsal arm plate bears arrays of hemispherical microstructures which in combination with underlying neural bundles and intraskeletal chromatophores probably function as a compound eye. These calcitic lenses possess superior properties such as light weight, mechanical strength, and very low aberration and birefringence; they display a unique focusing effect, signal enhancement, intensity adjustment, angular selectivity, and photochromic activity. The discovery of these unique optical structures revealed that brittlestar visual system is more sophisticated than initially thought and has inspired active interest toward designing of biomimetic highly tunable optical elements for a wide variety of cutting-edge technological applications. Up to this moment, analogous spherical calcitic lenses have been only reported in a few species of modern brittlestars and starfish. Similar calcitic microlenses have been also observed in the Late Cretaceous fossil echinoderms. Here, we report the structural evidence for the presence of calcitic microlenses in an extant species of starfish Archaster typicus. The close resemblance in microstructure and location between the transparent regions of compact stereom described above and microlenses in the photosensitive brittlestar Ophiocoma wendtii suggests that these regions may be involved with the photoreceptor system in A. typicus.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. Aizenberg J, Handler G (2004) Designing efficient microlense arrays: lessons from nature. J Mater Chem 14:2055–2072

    Article  Google Scholar 

  2. Aizenberg J, Tkachenko A, Weiner S, Addadi L, Hendler G (2001) Calcitic microlenses as part of the photoreceptor system in brittlestars. Nature 412:819–822

    Article  CAS  PubMed  Google Scholar 

  3. Aizenberg J, Muller DA, Grazul LJ, Hamann DR (2003) Direct fabrication of large micropatterned single structures. Science 299:1205–1208

    Article  CAS  PubMed  Google Scholar 

  4. Blevins E, Johnsen S (2004) Spatial vision in the Echinoid genus Echinometra. J Exp Biol 207:4249–4253

    Article  PubMed  Google Scholar 

  5. Bos AR, Gumanao GS, van Katwijk MM, Mueller B, Saceda MM, Tejada RLP (2011) Ontogenetic habitat shift, population growth, and burrowing behavior of the Indo-Pacific beach star, Archaster typicus (Echinodermata; Asteroidea). Mar Biol 158:639–648

    PubMed Central  Article  PubMed  Google Scholar 

  6. Cölfen H, Fratzl P (2012) Self-assembly of amorphous calcium carbonate microlens arrays. Nat Commun 3:75

    Google Scholar 

  7. Delroisse J, Ullrich-Lütr E, Ortega-Martinez O, Dupont S, Arnone MI, Mallefet J, Flammang P (2014) High opsin diversity in a non-visual infaunal brittle star. BMC Genom 15:1035

    Article  Google Scholar 

  8. Döderlein L (1898) Ueber “Krystallkörper” bei Seesternen. Denkschr Med Nat Ges Jena 8:491–494

    Google Scholar 

  9. Dubois P, Hayt S (1990) Ultrastructure des ossicules d’échinodermes à stéréome non perforé. In: De Ridder C, Dubois P, Lahaye M-C, Jangoux M (eds) Echinoderm research. A.A. Balkema Press, Rotterdam, pp 217–223

    Google Scholar 

  10. Garm A, Nilsson D-E (2014) Visual navigation in starfish: first evidence for the use of vision and eyes in starfish. Proc R Soc B 281:20133011

    PubMed Central  Article  PubMed  Google Scholar 

  11. Gorzelak P, Salamon MA, Lach R, Loba M, Ferré B (2014) Microlens arrays in the complex visual system of Cretaceous echinoderms. Nat Commun 5:3576. doi:10.1038/ncomms4576

    Article  PubMed  Google Scholar 

  12. Hendler G (2004) An Echinoderm’s eye view of photoreception and vision. In: Heinzeller T, Nebelsick JH (eds) Echinoderms Munchen: proceedings of the 11th international echinoderm conference. A.A. Balkema Publishers, Leiden, pp 339–349

    Google Scholar 

  13. Hendler G, Byrne M (1987) Fine structure of the dorsal arm plate of Ophiocoma wendti: evidence for a photoreceptor system. Zoomorphology 107:261–272

    Article  Google Scholar 

  14. Lee K, Wagermaier W, Masic A, Kommareddy KP, Bennet M, Manjubala I, Lee S-W, Park SB, Sun H, Deng S, Cui A, Lu M (2014) Fabrication of microlens arrays with varied focal lengths on curved surfaces using an electrostatic deformed template. J Micromech Microeng 24:065008

    Article  Google Scholar 

  15. Mah CL (2005) A phylogeny of Iconaster and Glyphodiscus (Goniasteridae; Valvatida; Asteroidea) with descriptions of four new species. Zoosystema 27:131–167

    Google Scholar 

  16. Mueller B, Bos AR, Graf G, Gumanao GS (2011) Size-specific locomotion rate and movement pattern of four common Indo-Pacific sea stars (Echinodermata; Asteroidea). Aquat Biol 12:157–164

    Article  Google Scholar 

  17. Ruppert EE, Barnes RD (1994) Invertebrate zoology, 6th edn. Saunders College Publishing, Harcourt Brace and Co., Orlando, p 937

    Google Scholar 

  18. Ullrich-Lüter EM, D’Aniello S, Arnone M (2013) C-opsin expressing photoreceptors in Echinoderms. Integr Comp Biol 53:27–38. doi:10.1093/icb/ict050

    Article  PubMed  Google Scholar 

  19. Yang S, Chen G, Megens M, Ullal CK, Han Y-J, Rapaport R, Thomas EL, Aizenberg J (2005) Functional biomimetic microlens arrays with integrated pores. Adv Mater 17:435–438

    Article  CAS  Google Scholar 

  20. Yoshida M (1966) Photosensitivity. In: Boolootian RA (ed) Physiology of Echinodermata. Wiley Interscience, New York, pp 435–464

    Google Scholar 

Download references


The authors would like to thank Janessa C. Cobb and Joan Herrera (Florida Fish and Wildlife Research Institute), John Lawrence (University of South Florida), Mary Wicksten (Texas A&M University), and Valerie Sponsel (University of Texas at San Antonio) for their assistance with the starfish identification. This work was supported by Welch Foundation (AX-1615), National Science Foundation (NSF) (DMR-1103730), National Science Foundation—Partnerships for Research and Education in Materials (NSF-PREM, DMR-0934218), National Institutes of Health (NIH) Research Centers in Minority Institutions Program (RCMI) Nanotechnology and Human Health Core (RCMI Grant 5G12RR013646-12), facilities of Kleberg Advanced Microscopy Center (KAMiC), and NIH RCMI Biophotonics Core (RCMI Grant G12MD007591) at UTSA.

Ethics standard

This study was performed on previously air-dried specimens of the starfish Archaster typicus. Ethical approval by the Institutional Animal Care and Use Committee at the University of Texas at San Antonio was not required because no experiments involving live vertebrate animals have been conducted.

Author information



Corresponding author

Correspondence to Miguel José-Yacamán.

Additional information

Communicating by A. Schmidt-Rhaesa.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vinogradova, E., Ruíz-Zepeda, F., Plascencia-Villa, G. et al. Calcitic microlens arrays in Archaster typicus: microstructural evidence for an advanced photoreception system in modern starfish. Zoomorphology 135, 83–87 (2016).

Download citation


  • Echinoderms
  • Starfish
  • Archaster typicus
  • Microlenses
  • Electron microscopy