, Volume 132, Issue 2, pp 197–213 | Cite as

Diversification of the pectoral fin shape in damselfishes (Perciformes, Pomacentridae) of the Eastern Pacific

  • R. Aguilar-MedranoEmail author
  • B. Frédérich
  • E. F. Balart
  • E. de Luna
Original Paper


Fin shape strongly influences performance of locomotion across all swimming styles. In this study, we focused on the diversity of the pectoral fin morphology in damselfishes of the Eastern Pacific. Underwater observations and a review of literature allowed the characterization of ten behavioral groups. Territorial and non-territorial species were discriminated easily with traditional morphometrics. Five ecomorphological groups were recognized by geometric morphometric analyses. Geometric data segregated the outgroup from the damselfishes and allowed the distinction of mean morphologies from extreme ones within territorial and non-territorial species. Additionally, geometric morphometric data split Abudefduf into two groups: (1) A. troschelii is similar to C. atrilobata and (2) A. concolor and A. declivifrons are close to Stegastes. Solitary territorial species (e.g., Stegastes) show rounded and high fins whereas non-territorial species living in groups (e.g., Chromis) present long and curved pectoral fins. In the range of morphological variation, the morphologies of Microspathodon (elongate with highly curved hydrodynamic trailing edge) and Azurina (long, slender and angular) represent the extreme morphologies within territorial and non-territorial species, respectively. Our study revealed a strong relationship between the pectoral fin shape and the behavioral diversification in damselfishes.


Ecomorphology Geometric morphometrics Locomotion Reef fishes Swimming Territorial behavior 



We thank the Consejo Nacional de Ciencia y Tecnología (CONACYT, México) for a doctoral scholarship support to RAM to develop this work. Thanks to Lucia Campos Dávila (CIBNOR), Sandra J. Raredon (USNM), H.J. Walkers (SIO), Philip A. Hastings (SIO), Victor Cota Gómez (CICIMAR), José De La Cruz Agüero (CICIMAR) and Rick Feeney (LACM) for their help in the museum collections. Thanks also to Ismael Mascareñas Osorio, Fernando Aranceta Garza, Rafael Cabral, Juan J. Ramírez Rosas, Mario Cota Castro and Enrique Calvillo, all from CIBNOR, and Deivis S. Palacios from CICIMAR, for their enthusiastic assistance in the field trips. This work was supported in part by the Centro de Investigaciones Biológicas del Noroeste, México (projects EP2 and EP3), the National Commission for the Knowledge and Use of Biodiversity of México (CONABIO/CT001), National Council of Science and Technology of México (CONACYT/83339) and Secretary of Environment and Natural Resources (SEMARNAT-CONACYT/023390). Finally, we thank Michel Laurin for his enlightening comments. Bruno Frédérich is a Postdoctoral Researcher at the F.R.S.-FNRS (Belgium).

Supplementary material

435_2012_178_MOESM1_ESM.doc (109 kb)
Supplementary material 1 (DOC 109 kb)


  1. Adams DC, Rohlf FJ, Slice DE (2004) Geometric morphometrics: ten years of progress following the revolution. Ital J Zool 71:5–16CrossRefGoogle Scholar
  2. Aguilar-Medrano R, Frédérich B, De Luna E, Balart EF (2011) Patterns of morphological evolution of the cephalic region in damselfishes (Perciformes, Pomacentridae) of the Eastern Pacific. Biol J Linn Soc 102:593–613CrossRefGoogle Scholar
  3. Allen GR (1975) Damselfishes of the south seas. T.F.H. Publications, Neptune CityGoogle Scholar
  4. Allen GR (1991) Damselfishes of the world. Aquariums Systems, MentorGoogle Scholar
  5. Allen GR, Woods LP (1980) A review of the damselfish genus Stegastes from the Eastern Pacific with description of a new species. Rec West Aust Mus 8:171–198Google Scholar
  6. Angel A, Ojeda FP (2001) Structure and trophic organization of subtidal fish assemblages on the northern Chilean coast: the effect of habitat complexity. Mar Ecol Prog Ser 217:81–91CrossRefGoogle Scholar
  7. Bellwood DR, Wainwright PC (2001) Locomotion in labrid fishes: implication for habitat use and cross-shelf biogeography on the Great Barrier Reef. Coral Reefs 20:139–150CrossRefGoogle Scholar
  8. Blake RW (1981) Influence of pectoral fin shape on thrust and drag in labriform locomotion. J Zool 194:53–66CrossRefGoogle Scholar
  9. Bookstein FL (1991) Morphometric tools for landmark data—geometry and biology. University Press, CambridgeGoogle Scholar
  10. Bray RN, Miller AC, Johnson S, Krause PR, Robertson DL, Westcott AM (1988) Ammonium excretion by macroinvertebrates and fishes on a subtidal rocky reef in southern California. Mar Biol 100:21–30CrossRefGoogle Scholar
  11. Cardini A, Elton S (2008) Does the skull carry a phylogenetic signal? Evolution and modularity and in the guenons. Biol J Linn Soc 93:813–834CrossRefGoogle Scholar
  12. Ceccarelli DM (2007) Modification of benthic communities by territorial damselfish: a multi-species comparison. Coral Reefs 26:853–866CrossRefGoogle Scholar
  13. Cooper JG (1863) On new genera and species of California fishes. Number I. Proc Cal Acad Nat Sci (1st Series) 3:70–77Google Scholar
  14. Cooper WJ, Weastneat MW (2009) Form and function of damselfish skull: rapid and repeated evolution into a limited number of trophic niches. BMC Evol Biol 9:24PubMedCrossRefGoogle Scholar
  15. Cooper WJ, Smith LL, Weastneat MW (2009) Exploring the radiation of a diverse reef fish family: phylogenetics of the damselfishes (Pomacentridae), with new classifications based on molecular analyses of all genera. Mol Phyl Evol 52:1–16CrossRefGoogle Scholar
  16. Cuvier G, Valenciennes A (1833) Histoire naturelle des poisons. Paris: 9 FG LevraultGoogle Scholar
  17. Dornburg A, Sidlauskas B, Santini F, Sorenson L, Near TJ, Alfaro ME (2011) The influence of an innovative locomotor strategy on the phenotypic diversification of triggerfish (Family: Balistidae). Evolution 65: no. doi: 10.1111/j.1558-5646.2011.01275.x
  18. Drucker EG, Lauder GV (2002) Wake dynamics and locomotor function in fishes: interpreting evolutionary patterns in pectoral fin design. Integr Comp Biol 42:997–1008PubMedCrossRefGoogle Scholar
  19. Emery AR (1973) Comparative ecology and functional osteology of fourteen species of damselfish (Pisces: Pomacentridae) at Alligator Reef, Florida Keys. Bull Mar Sci 23:649–770Google Scholar
  20. Espinoza M, Salas E (2005) Estructura de las comunidades de peces de arrecife en las Islas Catalinas y Playa Ocotal, Pacífico Norte de Costa Rica. Rev Biol Trop 53(3–4):523–536PubMedGoogle Scholar
  21. Evermann BW, Radcliffe L (1917) The fishes of the west coast of Peru and the Titicaca basin. Bull Unit Stat Nat Mus 95:1–166Google Scholar
  22. Fowler HW (1944) Results of the Fifth George Vanderbilt expedition (1941) (Bahamas, Caribbean Sea, Panama, Galapagos Archipelago and Mexican Pacific Islands). The fishes. Mono Acad Nat Sci Phil 6:57–529Google Scholar
  23. Frédérich B, Vandewalle P (2011) Bipartite life cycle of coral reef fishes promotes increasing shape disparity of the head skeleton during ontogeny: an example from damselfishes (Pomacentridae). BMC Evol Biol 11:82PubMedCrossRefGoogle Scholar
  24. Frédérich B, Pilet A, Parmentier E, Vandewalle P (2008) Comparative trophic morphology in eight species of damselfishes (Pomacentridae). J Morphol 269:175–188PubMedCrossRefGoogle Scholar
  25. Frédérich B, Fabri G, Lepoint G, Vandewalle P, Parmentier E (2009) Trophic niches of thirteen damselfishes (Pomacentridae) at the Grand Récif of Toliara, Madagascar. Ichtiol Res 56:10–17CrossRefGoogle Scholar
  26. Fulton CJ (2007) Swimming speed performance in coral reef fishes: field validations reveal distinct functional groups. Coral Reefs 26:217–228CrossRefGoogle Scholar
  27. Fulton CJ, Bellwood DR (2002) Ontogenetic habitat use in labrid fishes: an ecomorphological perspective. Mar Ecol Progr Ser 266:135–142CrossRefGoogle Scholar
  28. Fulton CJ, Bellwood DR, Wainwright PC (2001) The relationship between swimming ability and habitat use in wrasses (family Labridae). Mar Biol 139:25–33CrossRefGoogle Scholar
  29. Fulton CJ, Bellwood DR, Wainwright PC (2005) Wave energy and swimming performance shape coral reef fish assemblages. Proc R Soc Lond Ser B 272:827–832CrossRefGoogle Scholar
  30. Gilbert CH (1892) Scientific results of explorations by the U. S. Fish Commission steamer “Albatross.” 22. Descriptions of thirty-four new species of fishes collected in 1888 and 1889, principally among the Santa Barbara Islands and in the Gulf of California. Proc Unit Stat Nat Mus 14:539–566CrossRefGoogle Scholar
  31. Gill TN (1862) Catalogue of the fishes of lower California in the Smithsonian Institution, collected by Mr. J. Xantus. Proc Acad Nat Sci Phil 14:140–151Google Scholar
  32. Girard C (1854) Observations upon a collection of Fishes made on the Pacific coast of the United States, by Liut WP, Trowbridge USA, for the Museum of the Smithsonian Institution. Proc Acad Nat Sci Phil 7:142–156Google Scholar
  33. Gluckmann I, Vandewalle P (1998) Morphofunctional analysis of the feeding apparatus in four Pomacentridae species: Dascyllus aruanus, Chromis retrofasciata, Chrysiptera biocellata and C. unimaculata. Ital J Zool 65:421–424CrossRefGoogle Scholar
  34. Greenfield DW, Woods LP (1980) Review of the deep-bodied species of Chromis (Pisces: Pomacentridae) from the Eastern Pacific, with descriptions of three new species. Copeia 1980:626–641CrossRefGoogle Scholar
  35. Grove JG, Lavenberg RJ (1997) The fishes of the Galapagos islands. Stanford University Press, CaliforniaGoogle Scholar
  36. Grove JS, Gerzon D, Saa MD, Strang C (1986) Distribución y ecología de la familia Pomacentridae (Pisces) en las Islas Galápagos. Rev Biol Trop 34(1):127–140Google Scholar
  37. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: palentological statistics software package for education and data analysis. Pal Elec 4(1):9Google Scholar
  38. Heller E, Snodgrass RE (1903) Papers from the Hopkins Stanford Galapagos expedition, 1898–1899. XV. New fishes. Proc Wash Acad Sci 5:189–229Google Scholar
  39. Hixon MA (1981) An experimental analysis of territoriality in the California reef fish Embiotoca jacksoni (Embiotocidae). Copeia 1981(3):653–665CrossRefGoogle Scholar
  40. Hobson ES (1965) Diurnal-nocturnal activity of some inshore fishes in the Gulf of California. Copeia 1965(3):291–302CrossRefGoogle Scholar
  41. Hobson ES, Chess JR (1978) Trophic relationship among fishes and plankton in the lagoon at Enewetak Atoll, Marshall Islands. Fish Bull 76(1):133–153Google Scholar
  42. Jordan DS, Evermann BW (1898) The fishes of North and Middle America: a descriptive catalogue of the species of fish-like vertebrates found in the waters of North America, north of the Isthmus of Panama. Part II. Bull Unit Stat Nat Mus 47:1241–2183Google Scholar
  43. Jordan DS, Gilbert CH (1880) Description of a new flounder (Platysomatichthys stomias), from the coast of California. Proc Unit Sta Nat Mus 3:301–303CrossRefGoogle Scholar
  44. Klingenberg PC, Monteiro LR (2005) Distances and directions in multidimensional shape spaces: Implications for morphometric applications. Syst Biol 54(4):678–688PubMedCrossRefGoogle Scholar
  45. Lauder GV (2000) Function of the caudal fin during locomotion in fishes: kinematics, flow visualization, and evolutionary patterns. Am Zool 40:101–122CrossRefGoogle Scholar
  46. Lauder GV, Liem KF (1983) The evolution and interrelationships of the actinopterygian fishes. Bull Mus Comp Zool 150:95–197Google Scholar
  47. Lauder GV, Nauen JC, Drucker EG (2002) Experimental hydrodynamics and evolution: function of median fins in rayfinned fishes. Integr Comp Biol 42:1009–1017PubMedCrossRefGoogle Scholar
  48. Lobel PS (1980) Herbivory by damselfishes and their role in coral reef community ecology. Bull Mar Sci 30:273–289Google Scholar
  49. Mabuchi K, Miya M, Azuma Y, Nishida M (2007) Independent evolution of the specialized pharyngeal jaw apparatus in cichlid and labrid fishes. BMC Evol Biol 2007:7–10Google Scholar
  50. Monteiro LR (1999) Multivariate regression models and geometric morphometrics: the search for causal factors in the analysis of shape. Syst Biol 48:192–199PubMedCrossRefGoogle Scholar
  51. Monteiro NM, Quinteira SM, Silva K, Vieira MN, Almada VC (2005) Diet preference reflects the ontogenetic shift in microhabitat use in Lipophrys pholis. J Fish Biol 67:102–113CrossRefGoogle Scholar
  52. Nichols JT (1924) A contribution to the ichthyology of the Galapagos. Zoologica 5:63–65Google Scholar
  53. Núñez L, Vásquez J (1987) Observaciones tróficas y de distribución espacial de peces asociados a un bosque submareal de Lessonia trabeculata. Est Oceanol 6:79–85Google Scholar
  54. Petersen CW, Marchetti K (1989) Filial cannibalism in the Cortez damselfish Stegastes rectifraenum. Evolution 43(1):58–168CrossRefGoogle Scholar
  55. Quenouille B, Bermingham E, Planes S (2004) Molecular systematics of the damselfishes (Teleostei: pomacentridae): bayesian phylogenetic analyses of mitochondrial and nuclear DNA sequences. Mol Phyl Evol 31:62–68CrossRefGoogle Scholar
  56. Robertson DR, Allen GR (2008) Shorefishes of the Tropical Eastern Pacific online information system. Version 1.0 Smithsonian Tropical Research Institute, Balboa, Panamá.,
  57. Rohlf FJ (1993) Relative warps analysis and an example of its application to mosquito wings. Contributions to Morphometrics. In: Marcus LF, Bello E, Garcia-Valdecasas A (eds) Monografías del Museo Nacional de Ciencias Naturales, CSIC. Madrid, pp 139–151Google Scholar
  58. Rohlf FJ (1999) Shape statistics: procrustes superimpositions and tangent spaces. J Class 16:197–223CrossRefGoogle Scholar
  59. Rohlf FJ, Marcus LF (1993) A revolution in morphometrics. Trends Ecol Evol 8(4):129–132CrossRefGoogle Scholar
  60. Rohlf FJ, Slice D (1990) Extension of the procrustes method for the optimal superposition of landmarks. Syst Zool 39:40–59CrossRefGoogle Scholar
  61. Rothans TC, Miller AC (1991) A link between biologically imported particulate organic nutrients and the detritus food web in reef communities. Mar Biol 110:145–150CrossRefGoogle Scholar
  62. Sfakiotakis M, Lane DM, Davies JBC (1999) Review of fish swimming modes for aquatic locomotion. IEEE J Ocean Eng 24(2):237–252CrossRefGoogle Scholar
  63. Streelman JT, Karl SA (1997) Reconstructing labroid evolution using simple-copy nuclear DNA. Procc Roy Soc B: Biol Sci 264:1011–1020CrossRefGoogle Scholar
  64. Tang KL (2001) Phylogenetic relationships among damselfishes (Teleostei:Pomacentridae) as determined by mitochondrial DNA data. Copeia 2001(3):591–601CrossRefGoogle Scholar
  65. Tang KL, MacNyset KM, Holcroft NI (2003) The phylogenetic position of five genera (Acanthochromis, Azurina, Chrysiptera, Dichistodus, and Neopomacentrus) of damselfishes (Perciformes: Pomacentridae). Mol Phyl Evol 30:823–828CrossRefGoogle Scholar
  66. Tschudi JJ (1846) Ichthyologie. Pp. ii-xxx + 1-35 Pls 1-6 In: Untersuchungen über die Fauna Peruana. Scheitlin and Zollikofer 1–693Google Scholar
  67. Wainwright PC, Bellwood DR (2002) Ecomorphology of feeding in coral reef fishes. In: Sale, PF (eds) Coral reef fishes, dynamics and diversity in a complex ecosystem. Elseviere Sciences, California, pp 33–55Google Scholar
  68. Wainwright PC, Bellwood DR, Weastneat MW (2002) Ecomorphology of locomotion in labrid fishes. Environ Biol Fish 65:47–62CrossRefGoogle Scholar
  69. Walker JA (2004) Dynamics of pectoral fin rowing in a fish with an extreme rowing stroke: the threespine stickleback (Gasterosteus aculeatus). J Exp Biol 207:1925–1939PubMedCrossRefGoogle Scholar
  70. Walker JA, Weastneat MW (2002) Performance limits of labriform propulsion and correlates with fin shape and motion. J Exp Biol 205:177–187PubMedGoogle Scholar
  71. Weastneat MW, Walker JA (1997) Applied aspects of mechanical design, behavior, and performance of pectoral fin swimming in fishes. Proc Unma Unte Sub Tech 1997:1–14Google Scholar
  72. Webb PW (1982) Locomotor patterns in the evolution of actinopterygian fishes. Am Zool 22:329–342Google Scholar
  73. Webb PW (2002) Control of posture, depth, and swimming trajectories of fishes. Integr Comp Biol 42:94–101PubMedCrossRefGoogle Scholar
  74. Zelditch ML, Swiderski DL, Sheets HD, Fink WL (2004) Geometric morphometrics for biologists: a primer. Elsevier Academic Press, LondonGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • R. Aguilar-Medrano
    • 1
    Email author
  • B. Frédérich
    • 2
  • E. F. Balart
    • 1
  • E. de Luna
    • 3
  1. 1.Laboratorio de Necton y Ecología de ArrecifesCentro de Investigaciones Biológicas del NoroesteMexicoMexico
  2. 2.Laboratoire de Morphologie fonctionnelle et évolutive, Institut de Chimie (B6c)Université de LiègeLiègeBelgium
  3. 3.Departamento de Biodiversidad y SistemáticaInstituto de Ecología, ACXalapaMexico

Personalised recommendations