Skip to main content
Log in

Evolution and development of the synarcual in early vertebrates

  • Original Paper
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract

The synarcual is a structure incorporating the anterior vertebrae of the axial skeleton and occurs in vertebrate taxa such as the fossil group Placodermi and the Chondrichthyes (Holocephali, Batoidea). Although the synarcual varies morphologically in these groups, it represents the first indication, phylogenetically, of a differentiation of the vertebral column into separate regions. Among the placoderms, the synarcual of Cowralepis mclachlani Ritchie, 2005 (Arthrodira) shows substantial changes during ontogeny to produce an elongate, spool-shaped structure with a well-developed dorsal keel. Because the placoderm synarcual is covered in perichondral bone, the ontogenetic history of this Cowralepis specimen is preserved as it developed anteroposteriorly, dorsally and ventrally. As well, in the placoderm Materpiscis attenboroughi Long et al., 2008 (Ptyctodontida), incomplete fusion at the posterior synarcual margin indicates that both neural and haemal arch vertebral elements are added to the synarcual. A survey of placoderm synarcuals shows that taxa such as Materpiscis and Cowralepis are particularly informative because perichondral ossification occurs prior to synarcual fusion such that individual vertebral elements can be identified. In other placoderm synarcuals (e.g. Nefudina qalibahensis Lelièvre et al., 1995; Rhenanida), cartilaginous vertebral elements fuse prior to perichondral ossification so that individual elements are more difficult to recognize. This ontogenetic development in placoderms can be compared to synarcual development in Recent chondrichthyans; the incorporation of neural and haemal elements is more similar to the holocephalans, but differs from the batoid chondrichthyans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arratia G, Schultze H-P, Casciotta J (2001) Vertebral column and associated elements in dipnoans and comparison with other fishes: development and homology. J Morph 250:101–172

    Article  PubMed  CAS  Google Scholar 

  • Brazeau M (2009) The braincase and jaws of a Devonian ‘acanthodian’ and modern gnathostome origins. Nature 457:305–308

    Article  PubMed  CAS  Google Scholar 

  • Broili F (1933) Weitere Fischreste aus den Hunrückschiefern. Sber bayer Akad Wiss, math-naturwiss Abt 1933:269–313

    Google Scholar 

  • Burke AC, Nelson CE, Morgan BA, Tabin C (1995) Hox genes and the evolution of vertebrate axial morphology. Development 121:333–346

    PubMed  CAS  Google Scholar 

  • Chandler AC (1921) A new species of ray from the Texas coast, and report of the occurrence of a top minnow new to the fauna of eastern Texas. Hist nat poissons 59(2393):657–658

    Google Scholar 

  • Claeson K (2010) Trends in evolutionary morphology: a case study in the relationships of angel sharks and batoid fishes. Unpublished Ph.D thesis, The University of Texas at Austin, Austin

  • Claeson K (2011) The synarcual cartilage of batoids with emphasis on the synarcual of Rajidae. J Morph 212:1444–1463

    Article  Google Scholar 

  • Coates MI, Sequiera SEK (2001) Early sharks and primitive gnathostome relationships. In: Ahlberg PE (ed) Major events in early vertebrate evolution. Taylor and Francis, London, pp 241–262

    Google Scholar 

  • Compagno LJV (1973) Interrelationships of living elasmobranchs. Zool J Linn Soc 53(Suppl 1):15–61

    Google Scholar 

  • Compagno LJV (1977) Phyletic relationships of living sharks and rays. Am Zool 17:303–322

    Google Scholar 

  • Davis SP, Finarelli JA, Coates MI (2012) Acanthodes and shark-like conditions in the last common ancestor of modern gnathostomes. Nature 486(7402):247–250

    Google Scholar 

  • de Carvahlo MR, Maisey JG, Grande L (2004) Freshwater stingrays of the Green River formation of Wyoming (Early Eocene), with the description of a new genus and species and an analysis of its phylogenetic relationships (Chondrichthyes: Myliobatiformes). Bull Am Mus Nat Hist 284:1–136

    Article  Google Scholar 

  • Dean MN, Mull CG, Gorb SN, Summers AP (2009) Ontogeny of the tessellated skeleton: insight from the skeletal growth of the round stingray Urobatis halleri. J Anat 215:227–239

    Article  PubMed  Google Scholar 

  • Delaroche F (1809) Suite du mémoire sur les espèces de poissons observées à Iviça. Observations sur quelques-uns des poissons indiqués dans le précédent tableau et descriptions des espèces nouvelles ou peu connues. Ann Mus d’Hist Natur, Paris 13:313–361

    Google Scholar 

  • Dennis KD, Miles RS (1981) A pachyosteomorph arthrodire from Gogo, Western Australia. Zool J Linn Soc 73:213–258

    Article  Google Scholar 

  • Didier DA (1995) Phylogenetic systematics of extant chimaeroid fishes (Holocephali, Chimaeroidei). Am Mus Novit 3119:1–86

    Google Scholar 

  • Dingerkus G, Uhler LD (1977) Enzyme clearing of Alcian blue stained whole small vertebrates for demonstration of cartilage. Stain Techno. 52:229–232

    CAS  Google Scholar 

  • Gadow H (1933) The evolution of the vertebral column. Cambridge University Press, Cambridge, p 356

    Google Scholar 

  • Gardiner BG, Miles RS (1994) Eubrachythoracid arthrodires from Gogo, Western Australia. Zool J Linn Soc 112:443–477

    Article  Google Scholar 

  • Garman S (1880) New species of selachians in the museum collection. Bull Mus Comp Zool Harvard 6:167–172

    Google Scholar 

  • Garman S (1913) The Plagiostoma (sharks, skates, and rays). Mem Mus Comp Zool 36:1–515

    Google Scholar 

  • Girard (1854) Characteristics of some cartilaginous fishes of the Pacific coast of North America. Proc Acad Nat Sci Philadelphia 7:196–197

    Google Scholar 

  • González-Isáis M, Domínguez HMM (2004) Comparative anatomy of the Superfamily Myliobatoidea (Chondrichthyes) with some comments on phylogeny. J Morph 262:517–535

    Article  PubMed  Google Scholar 

  • Goujet D, Young GC (1995) Interrelationships of placoderms revisited. Geobios Mém Spéc 19:89–96

    Article  Google Scholar 

  • Goujet D, Young GC (2004) Placoderm anatomy and phylogeny: new insights. In: Arratia G, Wilson MVH, Cloutier R (eds) Recent advances in the origin and early radiation of vertebrates. Verlag Dr. Friedrich Pfeil, Munchen, pp 109–126

    Google Scholar 

  • Gross W (1962) Neuuntersuchung der Stensioellida (Arthrodira, Unter-devon). Notizbl Hess Landes Bodenforsch 90:48–86

    Google Scholar 

  • Gross W (1965) Über einen neuen Schädelrest von Stensiöella heintzi und Schuppen von Machaeracanthus sp. indet. aus dem Hunsrückschiefer. Notizbl Hess Landes Bodenforsch 93:7–18

    Google Scholar 

  • Hildebrand SF, Schroeder WC (1928) Fishes of Chesapeake Bay. Bull US Bureau Fish 43:1–366

    Google Scholar 

  • Jaekel O (1921) Die Stellung der Paläontologie zu einigen Problemen der Biologie und Phylogenie. Pal Zeit 3:213–239

    Google Scholar 

  • Janvier P (1996) Early vertebrates, oxford monographs on geology and geophysics, vol 33. Oxford University Press, Oxford, p 393

    Google Scholar 

  • Johanson Z, Carr RK, Ritchie A (2010) Vertebral development in the gnathostome stem group (Placodermi): fusion, gene misexpression, and homeotic transformations. Int J Dev Biol 54:71–80

    Article  PubMed  CAS  Google Scholar 

  • King BL, Gillis JA, Carlisle HR, Dahn RD (2011) A natural deletion of the HoxC cluster in elasmobranch fishes. Science 334(6062):1517

    Article  PubMed  CAS  Google Scholar 

  • Lacepède BGE (1798) Histoire Naturelle des Poissons. V. 1, Plassan, Paris

  • Lehman JP (1956) Les arthrodires du Dévonien supérieur du Tafilalet (sud marocain). Notes Mém Service Géol Maroc 129:1–170

    Google Scholar 

  • Lelièvre H, Carr RK (2009) The occipital-synarcual complex in Nefudina qalibahensis (Placodermi). J Vert Pal 29:584–588

    Article  Google Scholar 

  • Lelièvre H, Janvier P, Janjou D, Halawani M (1995) Nefudina qalibahensis nov. gen., nov. sp. un rhenanide (Vertebrata, Placo-dermi) du Dévonien Inférieur de la Formation Jauf (Emsien) d’Ara-bie Saoudite. Geobios 19:109–115

    Article  Google Scholar 

  • Linnaeus C (1758) Systema naturæ per regna tria naturæ, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I. Editio decima, reformata. Holmiæ, Salvius

  • Long JA (1997) Ptyctodontid fishes from the Late Devonian Gogo Formation, Western Australia, with a revision of the German genus Ctenurella Orvig 1960. Geodiversitas 19:515–555

    Google Scholar 

  • Long JA, Young GC, Holland T, Senden TJ, Fitzgerald EM (2006) An exceptional Devonian fish from Australia sheds light on tetrapod origins. Nature 444:199–202

    Article  PubMed  CAS  Google Scholar 

  • Long JA, Trinajstic K, Young GC, Senden TJ (2008) Live birth in the Devonian period. Nature 453:650–652

    Article  PubMed  CAS  Google Scholar 

  • Miles RS, Westoll TS (1968) The placoderm fish Coccosteus cuspidatus Miller ex Agassiz from the Middle Old Red Sandstone of Scotland. Part I. Descriptive morphology. Trans R Soc Edinb 67:373–476

    Article  Google Scholar 

  • Miles RS, Young GC (1977) Placoderm interrelationships reconsidered in the light of new ptyctodontids from Gogo, Western Australia. Linn Soc Symp Ser 4:123–198

    Google Scholar 

  • Mitchill SL (1825) The hedgehog-ray - a species of Fish taken occasionally near New-York, in the Atlantic Ocean, and now, as is believed, for the first time described. Am J Sci Arts 9:290–293

    Google Scholar 

  • Miyake T (1988) The systematics of the stingray genus Urotrygon with comments on the interrelationships within Urolophidae Chondrichthyes, Myliobatiformes). (Volumes I and II). PhD Dissertation. Texas A & M University, College Station

  • Moloshnikov AV (2008) Devonian Antiarchs (Pisces, Antiarchi) from Central and Southern European Russia. Pal J 42:691–773

    Google Scholar 

  • Morin-Kensicki EM, Melancon E, Eisen JS (2002) Segmental relationship between somites and vertebral column in zebrafish. Development 129:3851–3860

    PubMed  CAS  Google Scholar 

  • Morris J, Roberts GE (1862) On the Carboniferous Limestone of Oreton and Farlow, Shropshire. Q J Geol Soc Lond 18:94–106

    Article  Google Scholar 

  • Oulion S, Borday-Birraux V, Debiais-Thibaud M, Mazan S, Laurenti P, Casane D (2011) Evolution of repeated structures along the body axis of jawed vertebrates, insights from the Scyliorhinus canicula Hox code. Evol Dev 13:247–259

    Article  PubMed  Google Scholar 

  • Patterson C (1965) Phylogeny of the chimaeroids. Phil Trans R Soc Lond B 249:101–219

    Article  Google Scholar 

  • Pradel A, Tafforeau P, Maisey JG, Janvier P (2011) A new Paleozoic Symmoriiformes (Chondrichthyes) from the late Carboniferous of Kansas (USA) and cladistic analysis of early chondrichthyans. PLoS One 6(9):e24938

    Article  PubMed  CAS  Google Scholar 

  • Ravi V, Lam K, Tay B-H, Tay A, Brenner S, Venkatesh B (2009) Elephant shark (Callorhinchus milii) provides insights into the evolution of Hox gene clusters in gnathostomes. Proc Nat Acad Sci 106:16327–16332

    Article  PubMed  CAS  Google Scholar 

  • Ritchie A (2005) Cowralepis, a new genus of phyllolepid fish (Pisces, Placodermi) from the Late Middle Devonian of New South Wales, Australia. Proc Linn Soc NSW 126:215–259

    Google Scholar 

  • Schaffer AA, Kaplan FS, Tracy MR, O’Brien BA, Dormans JP, Shore EM, Harland RM, Kusumi K (2005) Developmental anomalies of the cervical spine in patients with fibrodysplasia ossificans progressiva are distinctly different from those in patients with Klippel-Feil syndrome. Spine 30:1379–1385

    Article  PubMed  Google Scholar 

  • Stensiö EA (1963) Anatomical studies on the arthrodiran head. Part I. Kung Sven vetenskaps handl 9:1–419

    Google Scholar 

  • Trinajstic K, Long JA, Johanson Z, Young G, Senden T (2012) New morphological information on the ptyctodontid fishes (Placodermi, Ptyctodontida) from Western Australia. J Vertebr Paleontol 32:757–780

    Google Scholar 

  • Young GC (2010) Placoderms (armored fish): dominant vertebrates of the Devonian Period. Ann Rev Earth Planet Sci 38:523–550

    Article  CAS  Google Scholar 

Download references

Acknowledgments

KT would like to acknowledge the receipt of a QEII Fellowship and KT and ZJ acknowledge DP110101127 awarded by the Australian Research Council. We also thank Mikael Siversson Western Australian Museum for access to the collections. AR would like to thank Mr. Alex McLachlan, owner of the quarry from which Cowralepis mclachlani has been collected. Mr. McLachlan has provided unlimited access to the quarry and substantial financial support. We would also like to thank Mr. Bruce Loomes, Canowindra, for discovering the specimen of C. mclachlani described in this paper, and for recognizing its importance. RC thanks Scott Schaefer for access to AMNH Ichthyology Collections. Finally, we would like to thank an anonymous reviewer and Kerin Claeson for their comments, which were very helpful in improving this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zerina Johanson.

Additional information

Communicated by A. Schmidt-Rhaesa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johanson, Z., Trinajstic, K., Carr, R. et al. Evolution and development of the synarcual in early vertebrates. Zoomorphology 132, 95–110 (2013). https://doi.org/10.1007/s00435-012-0169-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00435-012-0169-9

Keywords

Navigation