Advertisement

Zoomorphology

, 128:119 | Cite as

Reproductive cycle of Antedon mediterranea (Crinoidea, Echinodermata): correlation between morphology and physiology

  • Alice BarbaglioEmail author
  • Anna Biressi
  • Giulio Melone
  • Francesco Bonasoro
  • Ramón Lavado
  • Cinta Porte
  • M. Daniela Candia Carnevali
Original Paper

Abstract

Gonads of the mediterranean crinoid Antedon mediterranea were analyzed in order to reconstruct their histological organization. The tissue arrangement resembled that previously described in other crinoids. Five reproductive stages were identified in both males and females: recovery, growing, premature, mature, spent. Sexually dimorphic characters were observed at the gonopore level. Hermaphroditic individuals were never detected. There were novel findings concerning somatic accessory cells of the gonads. The reproductive cycle periodicity was indicated by analysis of reproductive stage frequencies in the period 2003–2005: spring and winter were the seasons with highest and lowest maturity levels, respectively. A role in the regulation of reproduction was hypothesized for testosterone and 17β-estradiol, which were found to be present in A. mediterranea tissues and to vary during the reproductive cycle, thus suggesting a correlation between steroid levels and morphologically recognizable reproductive stages.

Keywords

Echinoderms Oogenesis Spermatogenesis Testosterone Estradiol 

Notes

Acknowledgments

The present work received financial support from the EU (COMPRENDO Project no EVK1-CT-2002-00129). The authors are grateful to Dr. U. Shulte-Oehlmann for her coordinating activity and to all the partners of the COMPRENDO project for their support and advice. All the experiments carried out are in accord with the current laws of our country. The authors are grateful to the anonymous reviewers for their profitable suggestions and careful revision of the manuscript.

References

  1. Barbaglio A, Mozzi D, Sugni M, Tremolada P, Bonasoro F, Lavado R, Porte C, Candia Carnevali MD (2006) Effects of exposure to ED contaminants (TPT-Cl and Fenarimol) on crinoid echinoderms: comparative analysis of regenerative development and correlated steroid levels. Mar Biol (Berl) 149:65–77. doi: 10.1007/s00227-005-0205-0 CrossRefGoogle Scholar
  2. Barbaglio A, Sugni M, Di Benedetto C, Bonasoro F, Schnell S, Lavado R, Porte C, Candia Carnevali MD (2007) Gametogenesis correlated with steroid levels during the gonadal cycle of the sea-urchin Paracentrotus lividus (Echinodermata: Echinoidea). Comp Biochem Physiol A 147:466–474Google Scholar
  3. Bickell L, Chia FS, Crawford BJ (1980) A fine structural study of the testicular wall and spermatogenesis in the crinoid Florometra serratissima (Echinodermata). J Morphol 166:109–126. doi: 10.1002/jmor.1051660108 CrossRefGoogle Scholar
  4. Candia Carnevali MD (2005) Regenerative response and endocrine disrupters in Crinoid Echinoderms: an old experimental model, a new ecotoxicological test. In: Matranga V (ed) Progress in molecular and subcellular biology subseries marine molecular biotechnology. Echinodermata. Springer, Heidelberg, pp 167–199Google Scholar
  5. Candia Carnevali MD, Bonasoro F (2001) Microscopic overview of crinoid regeneration. Microsc Res Tech 55:403–426. doi: 10.1002/jemt.1187 PubMedCrossRefGoogle Scholar
  6. Candia Carnevali MD, Bonasoro F, Patruno M, Thorndyke MC, Galassi S (2001) PCB exposure and regeneration in crinoids (Echinodermata). Mar Ecol Prog Ser 215:155–167. doi: 10.3354/meps215155 CrossRefGoogle Scholar
  7. Chia FS, Atwood D, Crawford B (1975) Comparative morphology of Echinoderm sperm and possible phylogenetic implications. Am Zool 15:553–565Google Scholar
  8. Clark AH (1921) A monograph of the existing crinoids. Bull US Natl Mus 82(1):1–795Google Scholar
  9. Dan K, Kubota H (1960) Data on the spawning of Comanthus japonica between 1937 and 1955. Embryologia (Nagoya) 5(1):21–37. doi: 10.1111/j.1440-169X.1960.tb00264.x CrossRefGoogle Scholar
  10. Den Besten PJ (1998) Cytocrome P450 monoxygenase system in echinoderms. Comp Biochem Physiol 121(C):139–146Google Scholar
  11. Dieleman SJ, Schoenmakers HJN (1979) Radioimmunoassay to determine the presence of progesterone and estrone in the starfish Asterias rubens. Gen Comp Endocrinol 39:534–542. doi: 10.1016/0016-6480(79)90242-9 PubMedCrossRefGoogle Scholar
  12. Dimelow EJ (1958). Some aspects of the biology of Antedon bifida (Pennant) with some reference to Neocomatella europa. PhD dissertation, University of Reading (UK)Google Scholar
  13. Fell HB (1966) Ecology of crinoids. In: Boolootian RA (ed) Physiology of Echinodermata. Wiley (Interscience), New York, pp 49–62Google Scholar
  14. Haesaerts D, Jangoux M, Flammang P (2005) The attachment complex of brachilaria larvae of the sea star Asterias rubens (Echinodermata): an ultrastructural and immunocytochemical study. Zoomorphology 124:67–78. doi: 10.1007/s00435-005-0112-4 CrossRefGoogle Scholar
  15. Harvey LA (1931) Studies on echinoderm oogenesis I. Antedon bifida. Proc R Soc Lond B Biol Sci 107:417–441CrossRefGoogle Scholar
  16. Heinzeller T, Welsch U (1994) Crinoidea. In: Herrison F (ed) Microscopic anatomy of invertebrates: Echinodermata, vol 14. Wiley-Liss press, New York, pp 9–148Google Scholar
  17. Hines GA, Watts SA, Sower SA, Walker CW (1992) Sex steroid levels in the testes, ovaries and pyloric caeca during gametogenesis in the sea star Asterias vulgaris. Gen Comp Endocrinol 87:451–460. doi: 10.1016/0016-6480(92)90053-M PubMedCrossRefGoogle Scholar
  18. Holland ND (1988) Fine structure of oocyte maturation in a crinoid echinoderm, Oxycomanthus japonicus: a time-laps study by serial biopsy. J Morphol 198:205–217. doi: 10.1002/jmor.1051980207 CrossRefGoogle Scholar
  19. Holland ND (1991) Echinodermata: Crinoidea. In: Giese AC, Pearse JS (eds) Reproduction of marine invertebrates, vol 6. Boxwood, London, pp 247–299Google Scholar
  20. Holland ND, Grimmer JC (1975) Epidermal mucus and the reproduction of a crinoid echinoderm. Nature 255:223–224. doi: 10.1038/255223a0 PubMedCrossRefGoogle Scholar
  21. Holland ND, Kubota H (1975) Fluctuations in the volume of non-geminal cell population during the annual reproductive cycle of Comanthus japonica (Echinodermata: Crinoidea). Annot Zool Jpn 48:83–89Google Scholar
  22. Holland ND, Grimmer JC, Kubota H (1975) Gonadal development during the annual reproductive cycle of Comanthus japonica (Echinodermata: Crinoidea). Biol Bull 148:219–242. doi: 10.2307/1540544 PubMedCrossRefGoogle Scholar
  23. Hyman LH (1955) The invertebrates: Echinodermata, vol IV. Mc Graw-Hill, London, pp 34–119Google Scholar
  24. Janer G, LeBlanc GA, Porte C (2005) A comparative study on the metabolism of androgens in invertebrates and its modulation by xenoandrogens. Gen Comp Endocrinol 143:211–221. doi: 10.1016/j.ygcen.2005.03.016 PubMedCrossRefGoogle Scholar
  25. Lavado R, Barbaglio A, Candia Carnevali MD, Porte C (2006a) Steroid levels in crinoid echinoderms are altered by exposure to endocrine disruptors. Steroids 71:489–497. doi: 10.1016/j.steroids.2006.01.009 PubMedCrossRefGoogle Scholar
  26. Lavado R, Sugni M, Candia Carnevali MD, Porte C (2006b) Triphenyltin alters androgen metabolism in the sea urchin Paracentrotus lividus. Aquat Toxicol 79:247–256. doi: 10.1016/j.aquatox.2006.06.012 PubMedCrossRefGoogle Scholar
  27. Lutz I, Sugni M, Candia Carnevali MD, Schulte-Oehlmann U, Kloas W (2006) Evidence for the existence of functioning sex steroid receptors in invertebrates: I. Specific androgen and estrogen binding sites in the echinoderms Paracentrotus lividus and Antedon mediterranea. Comp Biochem Physiol (submitted)Google Scholar
  28. McClintock JB, Pearse JS (1987) Reproductive biology of the common antarctic crinoid Promachocrinus kerguelensis (Echinodermata: Crinoidea). Mar Biol (Berl) 96:375–383. doi: 10.1007/BF00412521 CrossRefGoogle Scholar
  29. Mita M (2000) 1-Methyladenine: a starfish oocyte maturation-inducing substance. Zygote 8(Suppl 1):9–11Google Scholar
  30. Mladenov PV (1986) Reproductive biology of the feather star Florometra serratissima: gonadal structure, breeding pattern and the periodicity of ovulation. Can J Zool 64:1642–1651. doi: 10.1139/z86-247 CrossRefGoogle Scholar
  31. Morcillo Y, Albalat A, Porte C (1999) Mussels as sentinels of organotin pollution: bioaccumulation and effects on P450-mediated aromatase activity. Environ Toxicol Chem 18:1203–1208CrossRefGoogle Scholar
  32. Nichols D (1994) Reproductive seasonality in the comatulid crinoid Antedon bifida (Pennant) from the English Channel. Philos Trans R Soc Lond B 343:113–134. doi: 10.1098/rstb.1994.0015 CrossRefGoogle Scholar
  33. Pearse JS, Cameron RA (1991) Echinodermata: Echinoidea. In: Giese AC, Pearse JS, Pearse VB (eds) Reproduction of marine invertebrates, echinoderms and lophophorates, vol VI. Boxwood Press, Pacific Grove, pp 514–664Google Scholar
  34. Reichensperger A (1908) Über das Vorkommen von Drüsen bei Crinoiden. Zool Anz 33:363–367Google Scholar
  35. Rutman JL (1975) The reproductive activity of the feather star Laprometra kluzingeri (Hartlaub) and Heterometra savignii (J. Müller) from the gulf of Elat (Red Sea). PhD dissertation, University of Tel-Aviv, Tel-Aviv, IsraelGoogle Scholar
  36. Rutman JL, Fishelson L (1985) Comparison of reproduction in the Red Sea feather-stars Lamprometra kluzingeri (Hartlaub), Heterometra savignii (J. Müller) and Capillaster multiradiatus (L.). In: Keegan BF, O’Connor BDS (eds) Echinodermata: Proceedings of the 5th International Echinodermata Conference, Galway, Balkema, Rotterdam, pp 195–201Google Scholar
  37. Schoenmakers HJN, Dieleman SJ (1981) Progesterone and estrone levels in the ovaries, pyloric ceca and perivisceral fluid during the annual reproductive cycle of starfish Asterias rubens. Gen Comp Endocrinol 43:63–70. doi: 10.1016/0016-6480(81)90032-0 PubMedCrossRefGoogle Scholar
  38. Spirlet C, Grosjean P, Jangoux M (1998) Reproductive cycle of the echinoid Paracentrotus lividus: analysis by means of the maturity index. Invertebr Reprod Dev 34(1):69–81Google Scholar
  39. Sugni M, Mozzi D, Barbaglio A, Bonasoro F, Candia Carnevali MD (2007) Endocrine disrupting compounds and echinoderms: new ecotoxicological sentinels for the marine ecosystem. Ecotoxicology 16(1):95–108. doi: 10.1007/s10646-006-0119-8 PubMedCrossRefGoogle Scholar
  40. Sugni M, Barbaglio A, Tremolada P, Candia Carnevali MD (2008). New tools and strategies for biomonitoring marine ecosystems: learning from echinoderms. In: Chen J, Guô C (eds) Ecosystem ecology research trends, Novapublisher (In press)Google Scholar
  41. Tortonese E (1965) Classe Crinoidea. In: Calderini (ed) Fauna d’Italia, vol VI, Bologna, pp 17–35Google Scholar
  42. Vail L (1987) Reproduction in five species of crinoids at Lizard Island, Great Barrier Reef. Mar Biol (Berl) 95:431–446. doi: 10.1007/BF00409573 CrossRefGoogle Scholar
  43. Voogt PA, Dieleman JS (1984) Progesterone and oestrone levels in the gonads and pyloric caeca of the male sea star Asterias rubens: a comparison with the corresponding levels in the female sea star. Comp Biochem Physiol A 79:635–639. doi: 10.1016/0300-9629(84)90461-4 CrossRefGoogle Scholar
  44. Voogt PA, den Besten PJ, Jansen M (1990) The Δ5-pathway in steroid metabolism in the sea star Asterias rubens L. Comp Biochem Physiol 97(B):555–562Google Scholar
  45. Voogt PA, Lambert JGD, Granneman JCM, Jansen M (1992) Confirmation of the presence of oestradiol-17β in sea star Asterias rubens by GC-MS. Comp Biochem Physiol B 101:13–16. doi: 10.1016/0305-0491(92)90151-G CrossRefGoogle Scholar
  46. Walker CW (1982) Nutrition of gametes. In: Jangoux M, Lawrence M (eds) Echinoderm nutrition. Balkema, Rotterdam, pp 449–468Google Scholar
  47. Wasson KM, Gower BA, Hines GA, Watts SA (2000) Levels of progesterone, testosterone and estradiol, and androstenedione metabolism in the gonads of Lytechinus variegatus (Echinodermata: Echinoidea). Comp Biochem Physiol 126(C):153–165Google Scholar
  48. Watts SA, Hines GA, Byrum CA, McClintok JB, Marion KR, Hopkins TS (1994) Tissue- and species-specific variations in androgen metabolism. In: David G, Feral R (eds) Echinoderms through time. Balkema, Rotterdam, pp 155–161Google Scholar
  49. Xu RA, Barker MF (1990) Annual changes in the steroid levels in the ovaries and the pyloric caeca of Sclerasterias mollis during the reproductive cycle. Comp Biochem Physiol A 95:127–133. doi: 10.1016/0300-9629(90)90020-S CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Alice Barbaglio
    • 1
    Email author
  • Anna Biressi
    • 1
  • Giulio Melone
    • 1
  • Francesco Bonasoro
    • 1
  • Ramón Lavado
    • 2
  • Cinta Porte
    • 2
  • M. Daniela Candia Carnevali
    • 1
  1. 1.Dipartimento di BiologiaUniversità degli Studi di MilanoMilanItaly
  2. 2.Environmental Chemistry DepartmentIIQAB-CSICBarcelonaSpain

Personalised recommendations