Skip to main content
Log in

Comparative immunohistochemistry of the cerebral ganglion in Gastrotricha: an analysis of FMRFamide-like immunoreactivity in Neodasys cirritus (Chaetonotida), Xenodasys riedli and Turbanella cf. hyalina (Macrodasyida)

  • Original Paper
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract

The neuropeptide FMRFamide (Phe–Met–Arg–Phe–NH2) is part of a large and diverse family of peptidergic neurotransmitters present throughout the animal kingdom. To date, no such neuropeptides have been demonstrated in gastrotrichs despite their presence in closely related invertebrates such as nematodes. Here, the FMRFamidergic nervous system of three marine gastrotrichs is investigated with immunofluorescence, CLSM, and 3D computer imaging to gain insight into structure of the cerebral ganglion and test various phylogenetic hypotheses on its organization. Results reveal that FMRFamide-like immunoreactivity (IR) is present throughout the nervous systems of three species: Neodasys cirritus (Chaetonotida), Xenodasys riedli and Turbanella cf. hyalina (Macrodasyida). Both macrodasyidans possess FMRFamide-like IR in the central, peripheral- and stomatogastric-nervous systems, while FMRFamide-like IR is restricted to the CNS in N. cirritus. In all three species, the cerebral ganglion is dumbbell-shaped and bordered bilaterally by cerebral perikarya: numerous perikarya are present in X. riedli and N. cirritus, while few perikarya are present in T. cf. hyalina. Cerebral perikarya flank the nerve ring neuropil, which contains IR fibers in the supra- and subpharyngeal commissures of both macrodasyidans, but in N. cirritus, only contains IR fibers in the suprapharyngeal commissure. Together, these results confirm the peripharyngeal nature of the gastrotrich cerebral ganglion, but are equivocal on hypotheses of its tripartite structure. Still, the neural organization of gastrotrichs, in particular, the architecture of the cerebral ganglion, is expected to hold valuable information for future assessments of gastrotrich phylogeny, and may yet provide key insights into the evolution of this enigmatic taxon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Bullock TH, Horridge GA (1965) Structure and function in the nervous system of invertebrates, vols I, II. WH Freeman, San Francisco

    Google Scholar 

  • Burry RW (2000) Specificity controls for immunocytochemical methods. J Histochem Cytochem 48:163–165

    PubMed  CAS  Google Scholar 

  • Fuchs J, Bright M, Funch P, Wanninger A (2006) Immunocytochemistry of the neuromuscular systems of Loxosomella vivipara and L. parguerensis (Entoprocta: Loxosomatidae). J Morphol 267:866–883

    Article  PubMed  Google Scholar 

  • Gagné GD (1980) Ultrastructure of the sensory palps of Tetranchyroderma papii (Gastrotricha, Macrodasyida). Zoomorphologie 95:115–125

    Article  Google Scholar 

  • Garey J (2001) Ecdysozoa: the relationship between Cycloneuralia and Panarthropoda. Zool Anz 240:321–330

    Article  Google Scholar 

  • Grimmelikhuijzen CJP (1983) FMRFamide immunoreactivity is generally occurring in the nervous systems of coelenterates. Histochem Cell Biol 78:361–381

    Article  CAS  Google Scholar 

  • Harszch S (2002) Neurobiologie und Evolutionsforschung: ‘Neurophylogenie” und die Stammesgeschichte der Euarthropoda. Neuroforum 4:267–273

    Google Scholar 

  • Harszch S (2006) Neurophylogeny: architecture of the nervous system and a fresh view on arthropod phylogeny. Integr Comp Biol 46:162–194

    Article  Google Scholar 

  • Harzsch S, Waloszek D (2000) Serotonin-immunoreactive neurons in the ventral nerve cord of Crustacea: a character to study aspects of arthropod phylogeny. Arthropod Struct Dev 29:307–322

    Article  PubMed  CAS  Google Scholar 

  • Hochberg R, Litvaitis MK (2001) The musculature of Dactylopodola baltica and other macrodasyidan gastrotrichs in a functional and phylogenetic perspective. Zool Scr 30:325–336

    Article  Google Scholar 

  • Hochberg R, Litvaitis MK (2003) Ultrastructural and immunocytochemical observations of the nervous systems of three macrodasyidan gastrotrichs. Acta Zool 84:171–178

    Article  Google Scholar 

  • Joffe BI, Kotikova EA (1987) Catecholamines in the nervous system of the gastrotrich Turbanella sp. Dokl Akad Nauk SSSR 296:1509–1511

    Google Scholar 

  • Joffe BI, Wikgren M (1995) Immunocytochemical distribution of 5-HT (serotonin) in the nervous system of the gastrotrich Turbanella cornuta. Acta Zool 76:7–9

    Article  Google Scholar 

  • Krajniak KG (2005) Annelid endocrine disruptors and a survey of invertebrate FMRFamide-related peptides. Integr Comp Biol 45:88–96

    Article  CAS  Google Scholar 

  • Lehman HK, Price DA (1987) Localization of FMRFamide-like peptides in the snail Helix aspersa. J Exp Biol 131:37–53

    PubMed  CAS  Google Scholar 

  • Liesenjohann T, Neuhaus B, Schmidt-Rhaesa A (2006) Head sensory organs of Dactylopodola baltica (Macrodasyida, Gastrotricha): a combination of transmission electron microscopical and immuncytochemical techniques. J Morphol 267:897–908

    Article  PubMed  Google Scholar 

  • Müller MCM, Sterrer W (2004) Musculature and nervous system of Gnathostomula peregrina (Gnathostomulida) shown by phalloidin labeling, immunohistochemistry, and CLSM, and their phylogenetic significance. Zoomorphology 123:169–177

    Google Scholar 

  • Nichols R, McCormick JB, Lim IA (1999) Structure, function, and expression of Drosophila melanogaster FMRFamide-related peptides. Ann NY Acad Sci 897:264–72

    Article  PubMed  CAS  Google Scholar 

  • Nielsen C (1995) Animal evolution. Oxford University Press, Oxford

    Google Scholar 

  • Orrhage L, Müller MCM (2005) Morphology of the nervous system of Polychaeta (Annelida). Hydrobiologia 535/536:79–111

    Article  Google Scholar 

  • Price DA, Greenberg MJ (1977) Structure of a molluscan cardioexcitatory neuropeptide. Science 197:670–671

    Article  PubMed  CAS  Google Scholar 

  • Paul DH (2003) Neurobiology of the Anomura: Paguroidea, Galtheiodea and Hippoidea. Mem Mus Vic 60:3–11

    Google Scholar 

  • Rieger RM, Ruppert EE, Rieger GE, Schoepfer-Sterrer C (1974) On the fine structure of gastrotrichs, with a description of Chordodasys antennatus sp. n. Zool Scr 3:219–237

    Article  Google Scholar 

  • Rogers CM, Franks CJ, Walker RJ, Burke JF, Holden-Dye L (2001) Regulation of the pharynx of Caenorhabditis elegans by 5-HT, octopamine, and FMRFamide-like neuropeptides. J Neurobiol 49:235–244

    Article  PubMed  CAS  Google Scholar 

  • Ruppert EE (1982) Comparative ultrastructure of the gastrotrich pharynx and the evolution of myopeithelial foreguts in Aschelminthes. Zoomorphology 99:181–220

    Article  Google Scholar 

  • Ruppert EE (1991) Gastrotricha. In: F Harrison, E.E. Ruppert (Eds) Microscopic anatomy of invertebrates, vol 4, Aschelminthes. Wiley, Washington, pp 41–109

  • Schinkmann K, Li C (1992) Localization of FMRFamide-like peptides in Caenorhabditis elegans. J Comp Neurol 316:251–260

    Article  PubMed  CAS  Google Scholar 

  • Schmidt-Rhaesa A (1996) The nervous system of Nectonema munidae and Gordius aquaticus, with implications for the ground pattern of the Nematomorpha. Zoomorphology 116:133–142

    Google Scholar 

  • Shaw C, Maule AG, Halton DW (1996) Platyhelminth FMRFamide-related peptides. Int J Parasitol 26:335–45

    Article  PubMed  CAS  Google Scholar 

  • Teuchert G (1976) Sinneseinrichtigungen bei Turbanella cornuta Remane (Gastrotricha). Zoomorphologie 83:193–207

    Article  Google Scholar 

  • Teuchert G (1977) The ultrastructure of the marine gastrotrich Turbanella cornuta Remane (Macrodasyoidea) and its functional and phylogenetic importance. Zoomorphologie 88:189–246

    Article  Google Scholar 

  • Todaro MA, Guidi L, Leasi F, Tongiorgi P (2006) Morphology of Xenodasys (Gastrotricha): the first species from the Mediterranean Sea and the establishment of Chordodasiopsis gen. nov. and Xenodasyidae fam. nov. J Mar Biol Assoc UK 86:1005–1015

    Article  Google Scholar 

  • Travis PB (1983) Ultrastructural study of body wall organization and Y-cell composition in the Gastrotricha. Z Zool Syst Evol 21:52–68

    Article  Google Scholar 

  • Wanninger A (2005) Immunocytochemistry of the musculature and the nervous system of the chordoid larva of Symbion pandora (Cycliophora). J Morphol 255:237–243

    Article  Google Scholar 

  • Wiedermann A (1995) Zur Ultrastruktur des Nervensystems bei Cephalodasys maximus (Macrodasyida, Gastrotricha). Microfauna Mar 10:173–233

    Google Scholar 

Download references

Acknowledgments

The author is grateful for the comments by two anonymous reviewers that improved this manuscript. The author is also grateful to the staff at the Smithsonian Marine Station in Fort Pierce, Florida for their assistance in collection and the use of their facilities. This research received financial support from the University of Massachusetts Lowell and from the Sumner Gerard Foundation at the Smithsonian Marine Station at Fort Pierce, Florida. This is Smithsonian Marine Station at Fort Pierce contribution 706.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rick Hochberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hochberg, R. Comparative immunohistochemistry of the cerebral ganglion in Gastrotricha: an analysis of FMRFamide-like immunoreactivity in Neodasys cirritus (Chaetonotida), Xenodasys riedli and Turbanella cf. hyalina (Macrodasyida). Zoomorphology 126, 245–264 (2007). https://doi.org/10.1007/s00435-007-0044-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00435-007-0044-2

Keywords

Navigation