Skip to main content
Log in

Functional morphology of Tethya species (Porifera): 1. Quantitative 3D-analysis of Tethya wilhelma by synchrotron radiation based X-ray microtomography

  • Original Article
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract

Rhythmic body contraction is a phenomenon in the Porifera, which is only partly understood. As a foundation for the understanding of the functional morphology of the highly contractile Tethya wilhelma, we performed a qualitative and quantitative volumetric 3D-analysis of the morphology of a complete non-contracted specimen at resolutions of 5.2 and 6.9 μm, using synchrotron radiation based X-ray computed microtomography (SR-μCT). For the first time, we were able to visualize all three major body structures of a complete poriferan without dissection of the shock-frozen, fixed and contrasted specimen in a near-to-life confirmation: poriferan tissue, mineral skeleton and aquiferous system. Applying a ‘virtual cast’ technique allowed us to analyze the structural details of the complete canal structure. Our results imply an extensive re-circulation of water inside the poriferan due to well-developed by-pass-canals, connecting excurrent and incurrent system. Nevertheless, the oscule region is strictly separated from the incurrent system. Based on our data, we developed a hypothetical flow regime for T. wilhelma, which explains the necessity of by-pass canals to minimize pressure boosts in the canal system during contraction. Additionally, re-circulation optimizes nutrient uptake, within small-sized poriferans, like T. wilhelma. Quantitative analysis allowed us to measure volumes and surfaces, displaying remarkable organizational differences between choanosome and cortex, by means of distribution of morphological elements. The surface-to-volume ratio proved to be very high, underlining the importance of the poriferan pinacoderm. We support a pinacoderm-contraction hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics Int 11:36–42

    Google Scholar 

  • Bagby RM (1966) The fine structure of myocytes in the sponges Microciona prolifera (Ellis and Sollander) and Tedania ignis (Duchassaing and Michelotti). J Morphol 118:167–182

    Article  PubMed  CAS  Google Scholar 

  • Bantseev V, Moran KL, Dixon DG, Trevithick JR, Sivak JG (2004) Optical properties, mitochondria, and sutures of lenses of fishes: a comparative study of nine species. Can J Zool 82:

  • Bavestrello G, Burlando B, Sarà M (1988) The architecture of the canal systems of Petrosia ficiformis and Chondrosia reniformis studied by corrosion casts (Porifera, Demospongiae). Zoomorphology 108:161–166

    Article  Google Scholar 

  • Bavestrello G, Burlando B, Sarà M (1995) Corrosion cast reconstruction of the three-dimensional architecture of demosponge canal system. In: Lanzavecchia G, Valvassori R, Candia Carnevali MD (eds) Body cavities: function and phylogeny: selected symposia and monographs U.Z.I., 8. Mucchi, Modena, 93–110

    Google Scholar 

  • Bavestrello G, Cerrano C, Corriero G, Sarà M (1998) Three-dimensional architecture of the canal system of some Hadromerids (porifera, Demospongiae). In: Watanabe Y, Fusetani N (eds) Sponge Sciences. Multidisciplinary perspectives. Springer, Tokyo, pp 235–247

    Google Scholar 

  • Bavestrello G, Calcinai B, Boyer M, Cerrano C, Pansini M (2002) The aquiferous system of two Oceanapia species (Porifera, Demospongiae) studied by corrosion casts. Zoomorphology 121:195–201

    Article  Google Scholar 

  • Bavestrello G, Arillo A, Calcinai B, Cerrano C (2003) The aquiferous system of Scolymastra joubini (Porifera, Hexactinellida) studied by corrosion casts. Zoomorphology 122:119–123

    Article  Google Scholar 

  • Beckmann F, Bonse U, Biermann T (1999a) New developments in attenuation- and phase-contrast microtomography using synchrotron radiation with low and high photon energies. Proc SPIE 3772:179–187

    Google Scholar 

  • Beckmann F, Heise K, Kolsch B, Bonse U, Rajewsky MF, Bartscher M, Biermann T (1999b) Three-dimensional imaging of nerve tissue by X-ray phase-contrast microtomography. Biophys J 76:98–102 http://www.biophysj.org/cgi/content/abstract/76/1/98

    Google Scholar 

  • Beckmann F, Donath T, Dose T, Lippmann T, Martins RV, Metge J, Schreyer A (2004) Microtomography using synchrotron radiation at DESY: current status and future developments. In: Bonse U (ed) Developments in X-ray tomography IV: SPIE Proceedings 5535, pp 1–10

  • Beutel RG, Haas A (1998) Larval head morphology of Hydroscapha natans (Coleoptera, Myxophaga) with reference to miniaturization and the systematic position of Hydroscaphidae. Zoomorphology 118:103–116 http://www.springerlink.metapress.com/openurl.asp?genre = articleandid = DOI 10.1007/s004350050061

  • Bond C (1999) Time-lapse studies of sponge motility and anatomical rearrangements. Mem Queensl Mus 4430:91

    Google Scholar 

  • Bond C, Harris AK (1988) Locomotion of sponges and its physical mechanism. J Exp Zool 246:271–284

    Article  PubMed  CAS  Google Scholar 

  • Bonse U, Busch F (1996) X-ray computed microtomography (μCT) using synchrotron radiation (SR). Prog Biophys Mol Biol 65:133–169

    Article  PubMed  CAS  Google Scholar 

  • Boury-Esnault N (1972) Une structure inhalante remarquable des spongiaires: le crible. Etude morphologique et cytologique. Arch Zool exp gén 113:7–23

    Google Scholar 

  • Boury Esnault N, De Vos L, Donadey C, Vacelet J (1990) Ultrastructure of choanosome and sponge classification. In: Rützler K (ed) New perspectives in sponge biology. Smithsonian Institution Press, pp 237–244

  • Boury Esnault N, Rützler K (1997) Thesaurus of sponge morphology. Smithson Contrib Zool 596:1–55

    Google Scholar 

  • Burlando B, Bavestrello G, Sarà M, Cocito S (1990) The aquiferous systems of Spongia officinalis and Cliona viridis (Porifera) based on corrosion cast analysis. Boll Zool 57:233–240

    Google Scholar 

  • Coxson HO, Rogers RM, Whittall KP, D’Yachkova Y, Pare PD, Sciurba FC, Hogg JC (1999) A quantification of the lung surface area in emphysema using computed tomography. Am J Respir Crit Care Med 159:851–856

    PubMed  CAS  Google Scholar 

  • Fanenbruck M, Harzsch S, Wägele JW (2004) The brain of the Remipedia (Crustacea) and an alternative hypothesis on their phylogenetic relationships. Proc Natl Acad Sci USA, 101:3868–3873 http://www.pnas.org/cgi/content/abstract/101/11/3868

  • Fishelson L (1981) Observations on the moving colonies of the genus Tethya (Demospongia, Porifera):1. Behavior and Cytology. Zoomorphology 98:89–100

    Google Scholar 

  • Fitch R (2005) WinSTAT—The Statistics Add-In for Microsoft Excel release 2005.1. Staufen, Germany

    Google Scholar 

  • Gaino E, Sarà M (1994) Siliceous spicules to Tethya seychellensis (Porifera) support the growth of a green alga: a possible light conducting system. Mar Ecol Prog Ser 108:147–151

    Google Scholar 

  • Hoernschemeyer T, Beutel RG, Pasop F (2002) Head structures of Priacma serrata Leconte (Coleptera, Archostemata) inferred from X-ray tomography. J Morphol 252:298–314

    Article  Google Scholar 

  • Hoffmann F, Larsen O, Rapp HT, Osinga R (2005a) Oxygen dynamics in choanosomal sponge explants. Mar Biol Res 1:160–163

    Google Scholar 

  • Hoffmann F, Larsen O, Thiel V, Rapp HT, Pape T, Michaelis W, Reitner J (2005b) An anaerobic world in sponges. Geomicrobiol J 22:1–10

    Article  Google Scholar 

  • Huesman RH, Gullberg GT, Greenberg WL, Budinger TF (1977) RECLBL Library users manual: Donner algorithms for reconstruction tomography. Lawrence Berkeley Laboratory, University of California, Livermore

  • Jaecques SV, Van Oosterwyck H, Muraru L, Van Cleynenbreugel T, De Smet E, Wevers M, Naert I, Vander Sloten J (2004) Individualised, micro CT-based finite element modelling as a tool for biomechanical analysis related to tissue engineering of bone. Biomaterials 25:1683–1696

    Article  PubMed  CAS  Google Scholar 

  • Kaandorp JA (1994) Fractal modelling. Growth and form in biology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Kaandorp JA, Kübler JE (1994) The algorithmic beauty of seeweed, sponges, and corals. Springer, Berlin Heidelberg New York

    Google Scholar 

  • LaBarbera M (1990) Principles of design of fluid transport systems in zoology. Science 249:992–1000

    Article  PubMed  CAS  Google Scholar 

  • Langenbruch PF, Weissenfels N (1987) Canal systems and choanocyte chambers in freshwater sponges (Porifera Spongillidae). Zoomorphology 107:11–16

    Article  Google Scholar 

  • Larsen PS, Riisgard HU (1994) The sponge pump. J Theor Biol 168:53–63

    Article  Google Scholar 

  • Lieberkühn N (1895) Neue Beiträge zur Anatomie der Spongie. Arch Anat Physiol 1859:353–358, 515–529

    Google Scholar 

  • Marshall W (1885) Coelenterata, Porifera, Tetractinellidae; Tafel XLVII. In: Leuckart R (ed) Zoologische Wandttafeln der wirbellosen Thiere. Th. Fischer, Kassel

  • Müller M, Marti T, Kriz S (1980) Improved structural preservation by freeze-substiution. In: Brederoo P, de Priesters W (eds) Electron microscopy, vol. II, Proceedings of the 7th European Congress on Electron Microscopy, Leiden, pp 720–721

  • Nickel M (2001) Cell biology and biotechnology of marine invertebrates—sponges (Porifera) as model organisms. Arb Mitteil Biol Inst Uni Stuttgart 32:1–157

    Google Scholar 

  • Nickel M (2004) Kinetics and rhythm of body contractions in the sponge Tethya wilhelma (Porifera: Demospongiae). J Exp Biol 207:4515–4524

    Article  PubMed  Google Scholar 

  • Nickel M (2006) Like a ‘rolling stone’: quantitative analysis of the body movement and skeletal dynamics of the sponge Tethya wilhelma. J Exp Biol: submitted

  • Nickel M, Brümmer F (2003) In vitro sponge fragment culture of Chondrosia reniformis (Nardo, 1847). J Biotechnol 100:147–159

    Article  PubMed  CAS  Google Scholar 

  • Nickel M, Brümmer F (2004) Body extension types of Tethya wilhelma: cellular organisation and their function in movement. Boll Mus Ist Biol Univ Genova 68:483–489

    Google Scholar 

  • Nickel M, Vitello M, Brümmer F (2002) Dynamics of cellular movements in the locomotion of the sponge Tethya wilhelma. Integr Comp Biol 42:1285

    Google Scholar 

  • Nickel M, Donath T, Schweikert M, Beckmann F (2006) Functional morphology of Tethya species (Porifera):1. Quantitative 3D-analysis of T. wilhelma by synchrotron radiation based X-ray microtomography. Zoomorphology (in press)

  • Pavans de Ceccatty M (1960) Les structures cellulaires de type nerveux et de type musculaire de l’éponge siliceuse Tethya lyncurium Lmck. C R Acad Sci III 251:1818–1819

    Google Scholar 

  • Pavans De Ceccatty M (1974) Coordination in sponges the foundations of integration. Am Zoologist 14:895–903

    Google Scholar 

  • Rasband WS (1997–2005) ImageJ release V. 1.34, Bethesda, Maryland, USA; http://www.rsb.info.nih.gov/ij/

  • Redi CA, Garagna S, Zuccotti M, Capanna EHZ, (2002) Visual zoology. The Pavia collection of Leuckart’s zoological wall charts (1877). Ibis, Como

    Google Scholar 

  • Reiswig HM (1971) In-situ pumping activities of tropical Demospongiae. Mar Biol 9:38–50

    Article  Google Scholar 

  • Reiswig HM (1975) The aquiferous systems of three marine Demospongiae. J Morphol 145:493–502

    Article  Google Scholar 

  • Riisgard HU, Larsen PS (1995) Filter-feeding in marine macro-invertebrates: pump characteristics, modelling and energy cost. Biol Rev Camb Philos Soc 70:67–106

    Google Scholar 

  • Riisgard HU, Thomassen S, Jakobsen H, Weeks JM, Larsen PS (1993) Suspension feeding in marine sponges Halichondria panicea and Haliclona urceolus: Effects of temperature on filtration rate and energy cost of pumping. Mar Ecol Prog Ser 96:177–188

    Google Scholar 

  • Sarà M (1990) Australian Tethya (Porifera, Demospongiae) from the Great Barrier Reef with description of two new species. Boll Zool 57:153–157

    Google Scholar 

  • Sarà M (1994) A rearrangement of the family Tethyidae (Porifera Hadromerida) with establishment of new genera and description of two new species. Zool J Linn Soc 110:355–371

    Article  Google Scholar 

  • Sarà M (1998) A Biogeographic and evolutionary survey of the Genus Tethya (Porifera, Demospongiae). In: Watanabe Y, Fusetani N (eds) Sponge sciences. Multidisciplinary perspectives. Springer, Tokyo, pp 83–94

    Google Scholar 

  • Sarà M (2002) Family Tethyidae Gray 1848. In: Hooper JNA, Van Soest RMW (eds) Systema Porifera: a Guide to the classification of Sponges. Vol. 1. Kluwer, New York, pp 245–265

  • Sarà M, Brulando B (1994) Phylogenetic reconstruction and evolutionary hypotheses in the family Tethyidae (Demospongiae). In: van Soest RWM, van Kempen TMG, Braekman J-C (eds) Sponges in time and space: biology, chemistry, paleontology. Amsterdam, pp 111–116

  • Sarà M, Manara E (1991) Cortical structure and adaptation in the Genus Tethya (Porifera, Demospongiae). In: Reitner J, Keupp H (eds) Fossil and recent sponges. Springer, Berlin Heidelberg New York, pp 306–312

    Google Scholar 

  • Sarà M, Corriero G, Bavestrello G (1993) Tethya (Porifera, demospongiae) species coexisting in a Maldivian coral reef lagoon: taxonomical, genetic and ecological data. Mar Ecol 14:341–355

    Article  Google Scholar 

  • Sarà M, Sarà A, Nickel M, Brümmer F (2001) Three new species of Tethya (Porifera: Demospongiae) from German aquaria. Stuttgarter Beitr Naturk Ser A 631:1–15

    Google Scholar 

  • Schmidt O (1866) Zweites Supplement der Spongien des Adriatischen Meeres enthaltend die Vergleichung der Adriatischen und Britischen Spongiengattungen. Verlag von Wilhelm Engelmann, Leipzig

    Google Scholar 

  • Shimizu K, Cha J, Stucky GD, Morse DE (1998) Silicatein alpha: cathepsin L-like protein in sponge biosilica. Proc Natl Acad Sci USA 95:6234–6238

    Article  PubMed  CAS  Google Scholar 

  • Simpson TL (1984) The cell biology of sponges. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Tsuda A, Rogers RA, Hydon PE, J.P. B (2002) Chaotic mixing deep in the lung. Proc Natl Acad Sci USA 99:10173–10178

    Article  PubMed  CAS  Google Scholar 

  • van Soest RWM (2005) World list of extant Porifera: Hadromerida; (V. 16.01.2005). http://www.science.uva.nl/ZMA/Invertebrates/Coel/scirep/Halichondrida.pdf. Cited 01 Nov 2005

  • van Soest RWM, Boury Esnault N, Janussen D, Hooper JNA (2006) World Porifera database. http://www.vliz.be/vmdcdata/porifera/index.php. Cited 04 Apr 2006

  • Vogel S (1978) Evidence for one-way valves in the water flow system of sponges. J Exp Biol 76:137–148

    Google Scholar 

  • Vogel S (1983) Life in moving fluids. The physical biology of flow. Princeton University Press, Princeton

    Google Scholar 

  • Weissenfels N (1982) Bau und Funktion des Süßwasserschwamms Ephydatia fluviatilis L. (Porifera): IX. Rasterelektronenmikroskopische Histologie und Cytologie. Zoomorphology 100:75–88

    Article  Google Scholar 

  • Westneat MW, Betz O, Blob RW, Fezzaa K, Cooper WJ, Lee W-K (2003) Tracheal respiration in insects visualized with synchrotron X-ray imaging. Science 299:558–560 http://www.sciencemag.org/cgi/content/abstract/299/5606/558

    Google Scholar 

  • Wilson HV (1910) A study on some epithelioid membranes in monaxonid sponges. J Exp Zool 9:536–571

    Google Scholar 

Download references

Acknowledgments

We thank Wolfgang Drube and Horst Schulte-Schrepping (DESY, Hamburg) and Jens Fischer (Medizinische Hochschule Hannover) for the support at beamline BW2; Gabriele Untereiner (1. Physikalisches Institut, Universität Stuttgart) and Alexander Fels (Geologisches Institut, Universität Stuttgart) for technical support with SEM; Jörg Hammel (Abt. Zoologie, Universität Stuttgart) für experimental support and discussion; Carsten Wolf, Isabel Heim and Kornelia Ellwanger (all Abt. Zoologie, Universität Stuttgart) for aquarium maintainance; Alexander Zocholl (Ulm) and Birgit Nickel (Stuttgart) for supportive discussion; Hans-Dieter Görtz and Franz Brümmer (both Abt. Zoologie, Universität Stuttgart) for providing infrastructure and support. MN received DESY travel grants based on DESY projects I-04-062 and I-03-059.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Nickel.

Additional information

Dedicated to Prof. Dr. Michele Sarà (Genova, Italy), in honour of his 80th birthday in 2006.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nickel, M., Donath, T., Schweikert, M. et al. Functional morphology of Tethya species (Porifera): 1. Quantitative 3D-analysis of Tethya wilhelma by synchrotron radiation based X-ray microtomography. Zoomorphology 125, 209–223 (2006). https://doi.org/10.1007/s00435-006-0021-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00435-006-0021-1

Keywords

Navigation