Skip to main content
Log in

Cephalic anatomy of Zorotypus hubbardi (Hexapoda: Zoraptera): new evidence for a relationship with Acercaria

  • Original Article
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract

External and internal head structures of Zorotypus hubbardi were examined. A detailed description is provided for the wingless morphs. The results are compared to the conditions found in alate specimens and in representatives of potentially related groups of insects. The pigmentation is strongly reduced in the wingless morphs and well-developed compound eyes, optic lobes and ocelli are absent. Kidney-shaped white spots between the paired ocelli and compound eyes were absent in all specimens examined. Most characters of the head (orthognathism, tentorium, musculature, mouthparts) are plesiomorphic. The wing and eye dimorphism, the strongly reduced head sutures, the reduced number of antennomeres, the presence of a prostheca on the left mandible and the presence of a transverse muscle of the head capsule and a retractor of the salivary sclerite are potential autapomorphies of Zoraptera. The unusual shape and large relative size of the brain and suboesophageal complex are also probably autapomorphic and a result of miniaturisation. Possible affinities with Dictyoptera were not supported by the results of this study. The only potential apomorphic feature of the head shared with Embioptera is the presence of a clearly delimited anteclypeus. However, this condition is also present in several groups of Acercaria. The very strongly developed M. clypeobuccalis, the medially divided prementum, and the slender, apically bifid laciniae without any mesally directed setae or spines are potential autapomorphies of Paraneoptera (incl. Zoraptera). If this group is indeed monophyletic, it is plausible to assume that the stem species was small like zorapterans and psocopterans and feeding on hyphae and spores of fungi, with mandibles with grinding molae and chisel-like laciniae suitable for loosening the food substrate. The feeding apparatus was then further modified within Acercaria, with a mortar-and-pistill apparatus in Psocoptera, and piercing–sucking mouthparts in Anoplura, Thysanoptera and Hemiptera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Badonnel A (1934) Recherche sur l’anatomie des Psoques. Bull Biol Fr Belge 18(Suppl):11–241

    Google Scholar 

  • Beutel R, Gorb S (2001) Ultrastructure of attachment specializations of hexapods (Arthropoda): evolutionary patterns inferred from a revised ordinal phylogeny. J Zool Syst Evol Res 39:177–207

    Article  Google Scholar 

  • Beutel RG, Haas A (1998) Larval head of Hydroscapha natans LeConte, 1874 (Coleoptera, Myxophaga, Hydroscaphidae) with special reference to miniaturization. Zoomorphology 18:103–116

    Article  Google Scholar 

  • Beutel RG, Pohl H. Hünefeld F (2005) Strepsipteran brains and effects of miniaturization (Insecta). Arthr Str Dev (in press)

  • Bitsch J (1963) Morphologie céphalique des Machilides (Insecta Thysanura). Ann Sci Nat Zool Paris 5:501–706

    Google Scholar 

  • Boudreaux HB (1979) Arthropod phylogeny, with special reference to insects. Wiley, New York

    Google Scholar 

  • Buckup L (1957) Der Kopf von Myrsidea cornicis (De Geer) (Mallophaga-Amblycera). Zool Jb (Anat) 77:241–288

    Google Scholar 

  • Carver M, Gross GF, Woodward TE (1991) Hemiptera (bugs, leafhoppers, cicadas, aphids, scale insects etc.). In: CSIRO (ed) The insects of Australia, vol 1. Cornell University Press, Ithaca, pp 429–509

  • Caudell AN (1918) Zorotypus hubbardi, a new species of the order Zoraptera from the United States. Can Entomol 50:375–381

    Article  Google Scholar 

  • Caudell AN (1920) Zoraptera not an apterous order. Proc Ent Soc Wash 22(5):85–97

    Google Scholar 

  • Chaudonneret J (1950) La morphologie céphalique de Thermobia domestica (Packard) (Insecte Aptérygote Thysanoure). Ann Sci Nat 11:145–302

    Google Scholar 

  • Choe JC (1989) Zorotypus gurneyi, new species, from Panama and redescription of Z. barberi Gurney (Zoraptera: Zorotypidae). Ann Entomol Soc Amer 82(2):149–155

    Google Scholar 

  • Cope OB (1940) The morphology of Psocus confraternus Banks (Psocoptera, Psocidae). Microentomol 5(4):91–115

    Google Scholar 

  • Deitz LL, Nalepa C, Klass K-D (2003) Phylogeny of the Dictyoptera re-examined (Insecta). Entomol Abh 61(1):69–91

    Google Scholar 

  • Delamare-Deboutteville C (1951) Characteres sexuels cephaliques de type intermédiaires chez les males aptères de Zorotypus delamarei Paulian. Nat Malg 3(1):37–38

    Google Scholar 

  • Dorsey CK (1943) The musculature of the labrum, labium and pharyngeal region of adult and immature Coleoptera. Smithson misc Coll 103(7):1–42, 24 pls

    Google Scholar 

  • Engel MS (2003a) Phylogeny of the Zoraptera. Entomol Abh 61(2):147–148

    Google Scholar 

  • Engel MS (2003b) Zoraptera. In: Resh VH, Cardé RT (eds) Encyclopedia of insects. Academic Press, New York, pp 1201–1203

    Google Scholar 

  • Engel MS, Grimaldi DA (2000) A winged Zorotypus in Miocene amber from the Dominican Republic (Zoraptera: Zorotypidae), with discussion on relationships of and within the order. Acta Geol Hisp 35:149–164

    Google Scholar 

  • Engel MS, Grimaldi DA (2002) The first Mesozioc Zoraptera (Insecta). Amer Mus Novitates 3362:1–20

    Article  Google Scholar 

  • Grebennikov VV, Beutel RG (2002) Morphology of the minute larva of Ptinella tenella, with special reference to effects of miniaturisation and the systematic position of Ptiliidae (Coleoptera: Staphylinoidea). Arthr Str Dev 31:157–172

    Article  Google Scholar 

  • Grimaldi D (2001) Insect evolutionary history from Handlirsch to Hennig, and beyond. J Paleontol 75:1152–1160

    Article  Google Scholar 

  • Grimaldi D, Engel MS (2005) Evolution of the insects. Cambridge University Press, Cambridge

    Google Scholar 

  • Gurney AB (1938) A synopsis of the order Zoraptera, with notes on the biology of Zorotypus hubbardi Caudell. Proc Soc Wash 40:57–87

    Google Scholar 

  • Hanken J, Wake DB (1993) Miniaturization of body size: organismal consequences and evolutionary constraints. Annu Rev Ecol Syst 24:501–519

    Article  Google Scholar 

  • Haub H (1967) Der Kopf von Pseudomenopon pilosum (Scopoli) (Mallophaga-Amblycera). Zool Jb (Anat) 84:493–558

    Google Scholar 

  • Hennig W (1953) Kritische Bemerkungen zum phylogenetischen System der Insekten. Beitr Ent 3(Sonderheft):1–85

    Google Scholar 

  • Hennig W (1969) Die Stammesgeschichte der Insekten. Waldemar Kramer, Frankfurt a M

  • Iturralde-Vinent M, MacPhee R (1996) Age and paleogeographic origin of Dominican Amber. Science 273:2750–2752

    Article  Google Scholar 

  • Kéler S v (1963) Entomologisches Wörterbuch. Akademieverlag, Berlin

    Google Scholar 

  • Kéler S v (1966) Zur Mechanik der Nahrungsaufnahme bei Corrodentiern. Z Parasitenkde Berlin 27:64–79

    Google Scholar 

  • Klass K-D (2003) Relationships among the principal lineages of Dictyoptera inferred from morphological data. Entomol Abh 61(2):134–137

    Google Scholar 

  • Kristensen NP (1975) The phylogeny of hexapod “orders”. A critical review of recent accounts. Z Zool Syst Evol-forsch 13:1–44

    Article  Google Scholar 

  • Kristensen NP (1981) Phylogeny of insect orders. Annu Rev Entomol 26:135–157

    Article  Google Scholar 

  • Kristensen NP (1991) Phylogeny of extant hexapods. In: CSIRO (ed) The insects of Australia, vol 1. Cornell University Press, Ithaca, pp 125–140

  • Kukalová-Peck J, Haas F (2001) Dermaptera hindwing structure and folding: new evidence for familial, ordinal and subordinal relationships within Neoptera (Insecta). Eur J Entomol 98:445–509

    Google Scholar 

  • Kukalová-Peck J, Peck SB (1993) Zoraptera wing structures: evidence for new genera and relationship with the blattoid orders (Insecta: Blattoneoptera). Syst Entomol 18(4):333–350

    Article  Google Scholar 

  • Leverault P (1938) The morphology of the Carolina Mantis. Section II: the musculature. Univ Kansas Sci Bull 25(21):557–633

    Google Scholar 

  • Lewis T (1973) Thrips, their biology, ecology and economic importance. Academic, London

    Google Scholar 

  • Lo N (2003) Molecular phylogenetics of Dictyoptera: insights into the evolution of termite eusociality and bacterial endosymiosis in cockroaches. Entomol Abh 61(2):137–138

    Google Scholar 

  • Maki T (1935) A study of the musculature and of the phasmid Megacrania tsudai Shiraki. Mem Fac Sci Agric Taihoku Imp Univ 12:181–279

    Google Scholar 

  • Maki T (1936) Studies on the skeletal structure, musculature and nervous system of the Alder Fly Chauliodes formosanus Petersen. Mem Fac Sci Agric Taihoku Imp Univ 16:117–243 + errata, 10 pls

    Google Scholar 

  • Matsuda R (1965) Morphology and evolution of the insect head. Mem Amer Entomol Inst 4:1–334

    Google Scholar 

  • Mickoleit E (1963) Untersuchungen zur Kopfmorphologie der Thysanopteren. Zool Jahrb Abt Anat Ontog Tiere 81:101–150

    Google Scholar 

  • Minet J, Bourgoin T (1986) Phylogenie et classification des Hexapodes (Arthropoda). Cah Liaisons OPIE 20:23–28

    Google Scholar 

  • Moulins M (1971) La cavité préorale de Blabera craniifer Burm. (Insecte, Dictyoptère) et son innervation: étude anatomo-histologique de l’épipharynx et l‘hypopharynx. Zool Jb (Anat) 88:527–586

    Google Scholar 

  • Poinar Jr GO (1988) Zorotypus palaeus, new species, a fossil Zoraptera (Insecta) in Dominican amber. J NY Entomol Soc 96(3):253–259

    Google Scholar 

  • Rähle W (1970) Untersuchungen an Kopf und Prothorax von Embia ramburi Rimsky-Korsakow 1906 (Embioptera, Embdiidae). Zool Jahrb Abt Anat Ontog Tiere 87(2):248–330

    Google Scholar 

  • Rasnitzyn AP (1998) On the taxonomic position of the insect order Zorotypida = Zoraptera. Zool Anz 237:185–194

    Google Scholar 

  • Riegel GT (1963) The distribution of Zorotypus hubbardi (Zoraptera). Ann Entomol Soc Amer 56:744–747

    Google Scholar 

  • Riegel GT (1987) Order Zoraptera. In: Stehr FW (ed) Immature insects. Kendall/ Hunt Publishing Co., Dubuque, Iowa, pp 184–185

    Google Scholar 

  • Risler H (1954) Der Kopf von Kopf Bovicola caprae (Gurlt) (Mallophaga). Zool Jb (Anat) 71:289–426

    Google Scholar 

  • Silvestri F (1913) Descrizione di un nuovo ordine di insetti. Boll Lab Zool gen Agr R. Sc Sup Agric Portici 7:193–209

    Google Scholar 

  • Slifer E, Sekhon SS (1978) Structures on the antennal flagellum of Zorotypus hubbardi (Insecta, Zoraptera). Not Nat 453:1–8

    Google Scholar 

  • Staniczek AH (2000) The mandible of silverfish (Insecta: Zygentoma) and Mayflies (Ephemeroptera): its morphology and phylogenetic significance. Zool Anz 239:147–178

    Google Scholar 

  • Strenger A (1953) Zur Kopfmorphologie der Ephemeridenlarven. Österr Zool Z 4:191–228

    Google Scholar 

  • Tröster G (1990) Der Kopf von Hybophthirus notophallus (Neumann) (Phthiraptera: Anoplura). Eine funktionsmorphologishce und konsequent-phylogenetische Analyse. Stuttg Beitr Naturk A 442:1–89

    Google Scholar 

  • Valentine BD (1986) Grooming behavior in Embioptera and Zoraptera (Insecta). Ohio J Sci 86:150–152

    Google Scholar 

  • Vishnoi HS (1962) Musculature of a common Indian termite Odontotermes obesus (Rambur) (Isoptera, Termitidae). Bull Entomol (Loyola College, Madras) 3:13–20

    Google Scholar 

  • Walker EM (1931) On the anatomy of Grylloblatta campodeiformis Walker. I. Exoskeleton and musculature of the head. Ann Entomol Soc Amer 24:519–536

    Google Scholar 

  • Weber H (1929) Kopf und Thorax von Psylla mali (Hemiptera-Homoptera). Z Morph Ökol Tiere 14:59–165

    Article  Google Scholar 

  • Weber H (1938) Beiträge zur Kenntnis der der Überordnung Psocoidea. 4. Die Labialdrüsen der Copeognathen. Zool Jb (Anat) 66:131–346

    Google Scholar 

  • Weidner H (1969) Die Ordnung Zoraptera oder Bodenläuse. Entomol Z 79(4):29–51

    Google Scholar 

  • Weidner H (1970a) 14. Isoptera (Termiten). In: Helmcke J-G, Starck D, Wermuth H (eds) Handbuch der Zoologie. Bd. IV: Arthropoda—2. Hälfte: Insecta, 2. Teil: Spezielles. Walter de Gruyter, Berlin New York, pp 77–83

    Google Scholar 

  • Weidner H (1970b) 15. Zoraptera (Bodenläuse). In: Helmcke J-G, Starck D, Wermuth H (eds) Handbuch der Zoologie. Bd. IV: Arthropoda—2. Hälfte: Insecta, 2. Teil: Spezielles. Walter de Gruyter, Berlin, pp 1–12

    Google Scholar 

  • Weidner H (1972) 16. Copeognatha (Psocodea). In: Helmcke J-G, Starck D, Wermuth H (eds) Handbuch der Zoologie. Bd. IV: Arthropoda—2. Hälfte: Insecta, 2. Teil: Spezielles. Walter de Gruyter, Berlin, pp 1–94

    Google Scholar 

  • Wheeler WC, Whiting M, Wheeler QD, Carpenter JM (2001) The phylogeny of extant hexapod orders. Cladistics 17:113–169

    Article  Google Scholar 

  • Willmann R (2003) Die phylogenetischen Beziehungen der Insecta: Offene Fragen und Probleme. Verh Westd Entom Tag 2001:1–64

    Google Scholar 

  • Wilson EO (1959) Some ecological characteristics of ants in New Guinea rain forests. Ecology 40:437–447

    Article  Google Scholar 

Download references

Acknowledgements

We are very grateful to Dr. DC Carlton (Louisiana State University), who provided many well-preserved wingless specimens of Zorotypus hubbardi. We also wish to thank Dr. K-D Klass (Museum für Tierkunde Dresden) for the gift of mantodean specimens and to V Grebennikov (Agriculture Canada) for the gift of slide preparations of alate and wingless Zorotypus. The loan of alate specimens preserved in ethanol from the Smithsonian Institution is gratefully acknowledged. We are also grateful to Dr. MS Engel (Natural History Museum, University of Kansas) for reprints and valuable comments, to E Anton for technical support (slide preparations), to F Hünefeld for 3-D reconstructions (both Institut für Spezielle Zoologie und Evolutionsbiologie, FSU Jena) and to K-H Hellmer for technical assistance (SEM pictures, Abteilung Evolutionsbiologie der Invertebraten, EKU Tübingen).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Georg Beutel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beutel, R.G., Weide, D. Cephalic anatomy of Zorotypus hubbardi (Hexapoda: Zoraptera): new evidence for a relationship with Acercaria. Zoomorphology 124, 121–136 (2005). https://doi.org/10.1007/s00435-005-0117-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00435-005-0117-z

Keywords

Navigation