Skip to main content
Log in

Structure of the nervous system in the tornaria larva of Balanoglossus proterogonius (Hemichordata: Enteropneusta) and its phylogenetic implications

  • Original Article
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract

The tornaria larva of hemichordates occupies a central position in phylogenetic discussions on the relationships between Echinodermata, Hemichordata, and Chordata. Dipleurula-type larvae (tornaria and echinoderm larvae) are considered to be primary in the life cycle and thus provide a model for the ancestral animal common to all three taxa (the theory of W. Garstang). If the similarities between tornaria and the larvae in Echinodermata result from homology, their nervous systems should be basically similar as well. The present study utilizes anti-serotonin and FMRFamide antisera together with laser scanning microscopy, and transmission electron microscopy, to describe in detail the nervous system of the tornaria of Balanoglossus proterogonius. Serotonin immunoreactive neurons were found in the apical and esophageal ganglia, and in the stomach epithelium. FMRFamide immunoreactive neurons, probably sensory in nature, were detected in the apical ganglion and in the equatorial region of the stomach epithelium. At the ultrastructural level, the apical organ consists of a columnar epithelium of monociliated cells and includes a pair of symmetrical eyespots. The apical ganglion is located at its base and has a well-developed neuropil. Different types of neurons are described in the apical organ, esophagus, and stomach. Comparison with larvae in Echinodermata shows several significant differences in the way the larval nervous system is organized. This calls into question the homology between tornariae and echinoderm larvae. The possibility of convergence between the two larval types is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2A–I.
Fig. 3A–I.
Fig. 4A–C.
Fig. 5A–C.
Fig. 6.
Fig. 7A–D.
Fig. 8A–D.
Fig. 9. A

Similar content being viewed by others

References

  • Arendt D, Nübler-Jung K (1994) Inversion of dorsoventral axis? Nature 371:26

    CAS  PubMed  Google Scholar 

  • Arendt D, Technau U, Wittbrodt J (2001) Evolution of the bilaterian larval foregut. Nature 409:81–85

    CAS  PubMed  Google Scholar 

  • Azmitia EC (2001) Modern views on an ancient chemical: serotonin effects on cell proliferation, maturation and apoptosis. Brain Res Bull 56:413–424

    CAS  PubMed  Google Scholar 

  • Bartolomaeus T (2001) Ultrastructure and formation of the body cavity lining in Phoronis muelleri (Phoronida, Lophophorata). Zoomorphology 120:135–148

    Article  Google Scholar 

  • Beer AJ, Moss C, Thorndyke M (2001) Development of serotonin-like and SALMFamide-like immunoreactivity in the nervous system of the sea urchin Psammechinus miliaris. Biol Bull 200:268–280

    CAS  PubMed  Google Scholar 

  • Bisgrove BW, Burke RD (1986) Development of serotonergic neurones in embryos of the sea urchin, Strongylocentrotus purpuratus. Dev Growth Differ 28:569–574

    Google Scholar 

  • Bisgrove BW, Burke RD (1987) Development of the nervous system of the pluteus of Strongylocentrotus droebachiensis. Cell Tissue Res 248:335–343

    Google Scholar 

  • Brandenburger JL, Woollacott RM, Eakin RM (1973) Fine structure of eyespots in tornarian larvae (Phylum: Hemichordata). Z Zellforsch 142:89–102

    CAS  Google Scholar 

  • Bromham LD, Degnan BM (1999) Hemichordates and deuterostome evolution: robust molecular phylogenetic support for a hemichordate + echinoderm clade. Evol Dev 1:166–171

    Article  CAS  PubMed  Google Scholar 

  • Brusca RC, Brusca GJ (1990) Invertebrates. Sinauer, Sunderland, MA

  • Bullock TH, Horridge GA (1965) Structure and function in the nervous systems of invertebrates, vol 1. Freeman, San Francisco, pp 1–798

  • Burke RD (1978) The structure of the nervous system of the pluteus larva of Strongylocentrotus purpuratus. Cell Tissue Res 191:233–247

    CAS  PubMed  Google Scholar 

  • Burke RD (1983a) Development of the larval nervous system of the sand dollar, Dendraster excentricus. Cell Tissue Res 229:145–154

    CAS  PubMed  Google Scholar 

  • Burke RD (1983b) The structure of the larval nervous system of Pisaster ochraceus (Echinodermata: Asteroidea). J Morphol 178:23–35

    Google Scholar 

  • Burke RD, Brand DG, Bisgrove BW (1986) Structure of the nervous system of the auricularia larva of Parastichopus californicus. Biol Bull 173:450–460

    Google Scholar 

  • Byrne M, Cisternas P (2002) Development and distribution of the peptidergic system in larval and adult Patiriella: comparison of sea star bilateral and radial nervous system. J Comp Neurol 451:101–114

    Article  CAS  PubMed  Google Scholar 

  • Byrne M, Cisternas P, Koop D (2001) Evolution of larval form in the sea star genus Patiriella: conservation and change in the larval nervous system. Dev Growth Differ 43:459–468

    Article  CAS  PubMed  Google Scholar 

  • Cameron CB, Garey JR, Swalla BJ (2000) Evolution of the chordate body plan: new insight from the phylogenetic analyses of deuterostome phyla. Proc Natl Acad Sci U S A 97:4469–4474

    Article  CAS  PubMed  Google Scholar 

  • Castresana J, Feldmaier-Fuchs G, Yokobori S, Satoh N, Paabo S (1998) The mitochondrial genome of the hemichordate Balanoglossus carnosus and the evolution of deuterostome mitochondria. Genetics 150:1115–1123

    CAS  PubMed  Google Scholar 

  • Chee F, Byrne M (1997) Visualization of the developing serotonergic nervous system in the larvae of the sea star, Patiriella regularis using confocal microscopy and computer generated 3-D reconstructions. Invert Reprod Dev 31:151–158

    Google Scholar 

  • Chee F, Byrne M (1999a) Serotonin-like immunoreactivity in the brachiolaria larvae of Patiriella regularis. Invert Reprod Dev 36:111–115

    CAS  Google Scholar 

  • Chee F, Byrne M (1999b) Development of the larval serotonergic nervous system in the sea star Patiriella regularis as revealed by confocal imaging. Biol Bull 197:123–131

    Google Scholar 

  • Chen CP, Tseng CH, Chen BY (1995) The development of the catecholaminergic nervous system in starfish and sea-cucumber larvae. Zool Stud 34:248–256

    CAS  Google Scholar 

  • Chia F-S, Burke RD, Koss R, Mladenov PV, Rumrill SS (1986) Fine structure of the doliolaria larva of the feather star Florometra seratissima (Echinodermata: Crinoidea), with special emphasis on the nervous system. J Morphol 189:99–120

    Google Scholar 

  • Child CM (1921) The origin and development of the nervous system. University of Chicago Press, Chicago

  • Crowther RJ, Whittaker JR (1992) Structure of the caudal neural tube in an ascidian larva: vestiges of its possible evolutionary origin from a ciliated band. J Neurophysiol 23:280–292

    CAS  Google Scholar 

  • Dautov SS, Nezlin LP (1992) Nervous system of the tornaria larva (Hemichordata: Enteropneusta). A histochemical and ultrastructural study. Biol Bull 183:463–475

    Google Scholar 

  • Dillon LS (1965) The hydrocoel and the ancestry of the chordates. Evolution 19:436–446

    Google Scholar 

  • Garstang W (1894) Preliminary note on a new theory of the phylogeny of the Chordata. Zool Anz 27:122–125

    Google Scholar 

  • Garstang W (1928) The morphology of the Tunicata and its bearing on the phylogeny of the Chordata. J Microsc Sci 72:51–187

    Google Scholar 

  • Garstang W (1939) Spolia bermudiana. II. The ciliary feeding mechanism of tornaria. Q J Microsc Sci 81:347–366

    Google Scholar 

  • Gilmour TH (1982) Feeding in tornaria larva and the development of gill slits in enteropneust hemichordates. Can J Zool 60:3010–3020

    Google Scholar 

  • Halanych KM (1995) The phylogenetic position of the pterobranch hemichordates based on 18S rDNA sequence data. Mol Phylogenetics Evol 4:72–76

    Article  CAS  Google Scholar 

  • Hanström B (1928) Vergleichende Anatomie des Nervensystems der wirbellosen Tiere unter Berücksichtigung seiner Funktion. Springer, Berlin Heidelberg New York

  • Hart MW, Miller RL, Madin LP (1994) Form and feeding mechanism of a living Planctosphaera pelagica (phylum Hemichordata). Mar Biol 120:521–533

    Google Scholar 

  • Hay-Schmidt A (1990) Distribution of catecholamine-containing, serotonin-like and neuropeptide FMRFamide-like immunoreactive cells and processes of the nervous system of the actinotroch larva of Phoronis muelleri (Phoronida). Cell Tissue Res 259:105–118

    Google Scholar 

  • Hay-Schmidt A (1992) Ultrastructure and immunocytochemistry of the nervous system of the larvae of Lingula anatina and Glottidia sp. (Brachiopoda). Zoomorphology 112:189–205

    Google Scholar 

  • Hay-Schmidt A (1995) The larval nervous system of Polygordius lacteus Schneider, 1868 (Polygordiidae, Polychaeta): immunocytochemical data. Acta Zool (Stockh) 76:121–140

    Google Scholar 

  • Hay-Schmidt A (2000) The evolution of the serotonergic nervous system. Proc R Soc Lond B 267:1071–1079

    PubMed  Google Scholar 

  • Hessling R, Purschke G (2000) Immunohistochemical (cLSM) and ultrastructural analysis of the central nervous system and sense organs in Aeolosoma hemprichi (Annelida, Aeolosomatidae). Zoomorphology 120:65–78

    Article  Google Scholar 

  • Hessling R, Westheide W (2002) Are Echiura derived from a segmented ancestor? Immunohistochemical analysis of the nervous system in developmental stages of Bonellia viridis. J Morphol 252:100–113

    PubMed  Google Scholar 

  • Ivanova-Kazas OM (1995) Evolutional embryology (in Russian). Nauka, St. Petersburg

  • Ivanova-Kazas OM, Ivanov AV (1987) The trochaea theory and phylogenetic significance of ciliated larvae. Sov J Mar Biol 13:67–80

    Google Scholar 

  • Jägersten G (1972) Evolution of the Metazoan life cycle. Academic, London

  • Jollie M (1973) The origin of the chordates. Acta Zool (Stockh) 54:81–100

    Google Scholar 

  • Kempf SC, Chun GV, Hadfield MG (1992) An immunocytochemical search for potential neurotransmitter in larvae of Phestilla sibogae (Gastropoda, Opistobranchia). Comp Biochem Physiol 101C:299–305

    CAS  Google Scholar 

  • Kempf SC, Page LR, Pires A (1997) Development of serotonin-like immunoreactivity in the embryos and larvae of nudibranch mollusks with emphasis on the structure and possible function of the apical sensory organ. J Comp Neurol 386:507–528

    CAS  PubMed  Google Scholar 

  • Komatsu M, Chia FS, Koss R (1991) Sensory neurons of the bipinnaria larva of the sea star, Luidia senegalensis. Invert Reprod Dev 19:203–211

    Google Scholar 

  • Kuhlenbeck H (1967) The central nervous system of vertebrates, vol 2. Invertebrates and origin of vertebrates. Karger, Basel

  • Lacalli TC (1993) Ciliary bands in echinoderm larvae: evidence for structural homologies and common plan. Acta Zool (Stockh) 74:127–133

    Google Scholar 

  • Lacalli TC (1994) Apical organs, epithelial domains, and the origin of the chordate central nervous system. Am Zool 34:533–541

    Google Scholar 

  • Lacalli TC (1996) Mesodermal pattern and pattern repeats in the starfish bipinnaria larva, and related patterns in other deuterostome larvae and chordates. Philos Trans R Soc Lond B 351:1737–1758

    Google Scholar 

  • Lacalli TC, Gilmour THJ (2001) Locomotory and feeding effectors of the tornaria larva of Balanoglossus biminiensis. Acta Zool (Stockh) 82:117–126

    Google Scholar 

  • Lacalli TC, Holland LZ (1998) The developing dorsal ganglion of the salp Thalia democratica, and the nature of the ancestral chordate brain. Philos Trans R Soc Lond B 353:1943–1967

    Article  Google Scholar 

  • Lacalli TC, Kelly SJ (2002) Anterior neural centres in echinoderm bipinnaria and auricularia larvae: cell types and organization. Acta Zool (Stockh) 83:99–110

    Google Scholar 

  • Lacalli TC, West JC (1993) A distinctive cell type common to diverse deuterostome larvae: comparative data from echinoderms, hemichordates and amphioxus. Acta Zool (Stockh) 74:1–8

    Google Scholar 

  • Lacalli TC, Gilmour TH, West JE (1990) Ciliary band innervation in the bipinnaria larva of Pisaster ochraceus. Philos Trans R Soc Lond B 330:371–390

    Google Scholar 

  • Løvtrup S (1977) The phylogeny of vertebrata. Wiley, London

  • Morikawa K, Tsuneki K, Ito K (2001) Expression patterns of HNK-1 carbohydrate and serotonin in sea urchin, amphioxus, and lamprey, with reference to the possible evolutionary origin of the neural crest. Zoology 104:81–90

    CAS  Google Scholar 

  • Moss C, Burke RD, Thorndyke MC (1994) Immunocytochemical localisation of the neuropeptides S1 and serotonin in larvae of the starfish Pisaster ochraceus and Asterias rubens. J Mar Biol Assoc U K 74:61–71

    CAS  Google Scholar 

  • Müller J (1850) Über die Larven und die Metamorphose der Echinodermen. Abhandl Akad Wiss Berlin 1948:75–109

    Google Scholar 

  • Muneoka Y, Morishita F, Furukawa Y, Matsushima O, Kobayashi M, Ohtani M, Takahashi T, Iwakoshi E, Fujisawa Y, Minakata H (2000) Comparative aspects of invertebrate neuropeptides. Acta Biol Hung 51:111–132

    CAS  PubMed  Google Scholar 

  • Nakajima Y (1986) Development of the nervous system of sea urchin embryos: formation of the ciliary bands and the appearance of two types of ectoneural cells in the pluteus. Dev Growth Differ 28:531–542

    Google Scholar 

  • Nakajima Y (1987) Localization of catecholaminergic nerves in larval echinoderms. Zool Sci 4:293–299

    Google Scholar 

  • Nakajima Y (1988) Serotonergic nerve cells of starfish larvae. In: Burke RP, Mladenov PV, Lambert P, Parsley RL (eds) Echinoderm biology. Balkema, Rotterdam, pp 235–239

  • Nezlin L (2000) Tornaria of hemichordates and other dipleurula-type larvae: a comparison. J Zool Syst Evol Res 38:149–156

    Article  Google Scholar 

  • Nezlin LP, Yushin VV (1994) The digestive tract of the echinopluteus of Echinocardium cordatum (Echinodermata, Echinoida): its ultrastructure and innervation. Can J Zool 72:2090–2099

    Google Scholar 

  • Nielsen C (1987) Structure and function of metazoan ciliary bands and their phylogenetic significance. Acta Zool (Stockh) 68:205–262

    Google Scholar 

  • Nielsen C (1999) Origin of the chordate central nervous system: and the origin of the chordates. Dev Genes Evol 209:198–205

    Article  CAS  PubMed  Google Scholar 

  • Nielsen C (2001) Animal evolution: interrelationships of the living phyla, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Nielsen C, Riisgård HU (1998) Tentacle structure and filter-feeding in Crisia eburnea and other cyclostomatous bryozoans, with a review of upstream-collecting mechanisms. Mar Ecol Prog Se 168:163–186

    Google Scholar 

  • Page LR, Parries SC (2000) Comparative study of the apical ganglion in planktotrophic caenogastropod larvae: ultrastructure and immunoreactivity to serotonin. J Comp Neurol 418:383–401

    Google Scholar 

  • Peterson KJ, Cameron RA, Tagawa K, Satoh N, Davidson EH (1999) A comparative molecular approach to mesodermal pattern in basal deuterostomes: the expression pattern of Brachyury in the enteropneust hemichordate Ptychodera flava. Development 126:85–95

    CAS  PubMed  Google Scholar 

  • Plate L (1922) Allgemeine Zoologie und Abstammungslehre, vol I. Fisher, Jena

  • Ryberg E (1974) The localization of biogenic amines in the echinopluteus. Acta Zool (Stockh) 55:179–189

    Google Scholar 

  • Sakharov DA (1991) Integrative function of serotonin common to distantly related invertebrate animals. In: Gustafsson M, Reuter M (eds) The early brain. Akademi, Abo, pp 73–88

  • Salvini-Plawen L (1980) Was ist eine Trochophora? Eine Analyse der Larventypen mariner Protostomier. Zool Jahrb Anat 103:389–423

    Google Scholar 

  • Salvini-Plawen L (1998) The urochordate larva and archichordate organization: chordate origin and anagenesis revisited. J Zool Syst Evol Res 36:129–145

    Google Scholar 

  • Strathmann RR (1989) Existence and functions of a gel filled primary body cavity in development of echinoderms and hemichordates. Biol Bull 176:25–31

    Google Scholar 

  • Strathmann R, Bonar D (1976) Ciliary feeding of tornaria larvae of Ptychodera flava (Hemichordata, Enteropneusta). Mar Biol 34:317–324

    Google Scholar 

  • Tagawa K, Humphreys T, Satoh N (1998) Novel pattern of Brachyury gene expression in hemichordate embryos. Mech Dev 75:139–143

    CAS  PubMed  Google Scholar 

  • Tagawa K, Satoh N, Humphreys T (2001) Molecular studies of hemichordate development: a key to understanding the evolution of bilaterial animals and chordates. Evol Dev 3:443–454

    Article  CAS  PubMed  Google Scholar 

  • Thorndyke MC, Crawford BD, Burke RD (1992) Localisation of a SALMFamide neuropeptide in the larval nervous system of the sand dollar, Dendraster excentricus. Acta Zool (Stockh) 73:207–212

    Google Scholar 

  • Turbeville JM, Schulz JR, Raff RA (1994) Deuterostome phylogeny and the sister group of the chordates: evidence from molecules and morphology. Mol Biol Evol 11:648–655

    CAS  PubMed  Google Scholar 

  • Voronezhskaya EE, Tyurin SA, Nezlin LP (2002) Neuronal development in larval chiton Ischnochiton hakodadensis (Mollusca: Polyplacophora). J Comp Neurol 444:25–38

    Article  PubMed  Google Scholar 

  • Voronezhskaya EE, Tsitrin EB, Nezlin LP (2003) Neuronal development in the larval polychaete Phyllodoce maculata (Phyllodocidae). J Comp Neurol 455:299–309

    Article  PubMed  Google Scholar 

  • Wada H, Satoh N (1994) Details of the evolutionary history from invertebrates to vertebrates, as deducted from the sequences of 18S rDNA. Proc Natl Acad Sci U S A 91:1801–1804

    CAS  PubMed  Google Scholar 

  • Wada H, Satoh N (2001) Patterning the protochordate neural tube. Curr Opin Neurobiol 11:16–21

    CAS  PubMed  Google Scholar 

  • Whitington PM (1995) Conservation versus change in early axonogenesis in arthropod embryos: a comparison between myriapods, crustaceans and insects. In: Breidbach O, Kutsch W (eds) The nervous systems of invertebrates: an evolutionary and comparative approach, vol 72. Birkhaüser, Basel, pp 181–219

  • Wiedersheim R (1893) Der Bau des Menschen als Zeugniss für seine Vergangenheit, 2nd edn. Mohr, Leipzig

  • Willmer P (1990) Invertebrate relationships. Patterns in animal evolution. Cambridge University Press, Cambridge

Download references

Acknowledgements

The authors would like to thank Dr. S. Dautov (Institute of Marine Biology, Vladivostok) for providing us with tornaria larvae, Dr. E. Voronezhskaya (Institute of Developmental Biology, Moscow) for help with immunostaining procedures and fruitful discussions, and M. Claeys (University of Ghent) and D. Fomin (Institute of Marine Biology) for technical assistance with electron microscopy. This study was funded in part by the Support for Science Schools grant N 1219.2003.4 for V.V.Y.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid P. Nezlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nezlin, L.P., Yushin, V.V. Structure of the nervous system in the tornaria larva of Balanoglossus proterogonius (Hemichordata: Enteropneusta) and its phylogenetic implications. Zoomorphology 123, 1–13 (2004). https://doi.org/10.1007/s00435-003-0086-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00435-003-0086-z

Keywords

Navigation