Skip to main content
Log in

Renal effects of antihypertensive therapy in uninephrectomized diabetic rats

  • Published:
Research in Experimental Medicine

Abstract

Diabetic nephropathy is a major cause of chronic renal failure. The evidence available indicates that renal hemodynamics are altered in clinical and experimental diabetes mellitus. In these circumstances, an increased glomerular filtration rate (GFR) is associated with albuminuria and eventually with glomerulosclerosis. We studied the renal and hemodynamic effects of long-term treatment (5 months) using an angiotensin-converting enzyme inhibitor (trandolapril, 0.7 mg/g b.w. per day) and a calcium antagonist (verapamil, 20 mg/g b.w. per day), and the combination of the two (veratran) at the same dose, on streptozotocin-diabetic uninephrectomized rats. A moderate degree of hyperglycemia (2–4 g/l) was maintained with daily insulin. Mean arterial pressure (MAP) was measured monthly using the tail-cuff method. Determinations were made of urinary protein excretion, creatinine clearance, urinary electrolyte excretion and, at the end of treatment, renal and cardiac hypertrophy. MAP was similar in control and untreated diabetic rats. Trandolapril and veratran reduced MAP whereas verapamil alone had no effect on these animals. All groups showed a slight proteinuria that increased with verapamil treatment. The GFR of diabetic animals was higher than in the control group (mainly the first 2 months), except for veratran group, in which it was similar to the control value. Urinary electrolyte excretion increased in all diabetic groups with no significant differences among them. Veratran induced a protective effect against cardiac hypertrophy. None of the treatments affected renal hypertrophy. It is concluded that in a murine model of diabetes without hypertension or proteinuria, a combination of verapamil and trandolapril prevents hyperfiltration whereas verapamil alone increases proteinuria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson S, Renke HG, Brenner BM (1992) Nifedipine versus fosinopril in unineph-rectomized diabetic rats. Kidney Int 41:891–897

    Article  CAS  PubMed  Google Scholar 

  2. Bakris GL (1993) Hypertension in the diabetic patient: an overview of interventional studies to preserve renal function. Am J Hypertens 6[Suppl]:140–147

    Google Scholar 

  3. Bonsnes RW, Tausski HA (1945) The colorimetric determination of creatinine by the Jaffé reaction. J Biol Chem 158:581

    CAS  Google Scholar 

  4. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  5. Brown SA, Walton CL, Crawford P, Bakris GL (1993) Long term effects of antihypertensive regimens on renal hemodynamics and proteinuria. Kidney Int 43:1210–1218

    Article  CAS  PubMed  Google Scholar 

  6. Brunner FP, Thiel G, Hermle M, Bock HA, Mihatsch MJ (1989) Long-term enalapril and verapamil in rats with reduced renal mass. Kidney Int 36:969–977

    Article  CAS  PubMed  Google Scholar 

  7. Davis MJ, Donovitz JA, Hood JD (1992) Stretch-activated single-channel and whole cell currents in vascular smooth muscle cells. Am J Physiol 262:C1083–C1088

    CAS  PubMed  Google Scholar 

  8. DCCT Group (1993) The effects of intensive insulin treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329:977–986

    Article  Google Scholar 

  9. Dworkin LD, Benstein JA, Parker M, Tolbert E, Feiner HD (1993) Calcium antagonists and converting enzyme inhibitors reduce renal injury by different mechanisms. Kidney Int 43:804–814

    Article  Google Scholar 

  10. Dworkin LD, Levin RL, Benstein JA (1990) Effects of nifedipine and enalapril on glomerular injury in rats with deoxycorticosterone-salt hypertension. Am J Physiol 259:F598–F604

    CAS  PubMed  Google Scholar 

  11. Dworkin LD, Parker M, Feiner HD, Tolbert E (1988) Renal protective actions of nifedipine and enalapril: averting the hypertrophied hypertensive glomerulus (abstract). Kidney Int 37:504

    Google Scholar 

  12. Epstein M (1991) Calcium antagonists and the kidney: implications for renal protection. J Cardiovasc Pharm 18[Suppl 10]:S64–S70

    Article  Google Scholar 

  13. Hoelscher D, Bakris G (1994) Antihypertensive therapy and progression of diabetic renal disease. J Cardiovasc Pharmacol 23[Suppl 1]:S34–S38

    Article  PubMed  Google Scholar 

  14. Harris DCH, Hammond WS, Burke TJ, Schrier RW (1987) Verapamil protects against progression of experimental chronic renal failure. Kidney Int 31:41–46

    Article  CAS  PubMed  Google Scholar 

  15. Hostetter TH, Troy JL, Brenner BM (1981) Glomerular hemodynamics in experimental diabetes mellitus. Kidney Int 19:410–415

    Article  CAS  PubMed  Google Scholar 

  16. Jackson B, Debrevi L, Cubela R, Whitty M, Johnston CI (1986) Preservation of renal function in the rat remnant kidney model of chronic failure by blood pressure reduction. Clin Exp Pharmacol Physiol 13:319–323

    Article  CAS  PubMed  Google Scholar 

  17. Kleinman KS, Fine LG (1988) Prognostic implications of renal hypertrophy in diabetes mellitus. Diabetes 4:179–189

    CAS  Google Scholar 

  18. López-Farré A, Gómez-Garre DN, Bernabeu F, López-Novoa JM (1991) A role for endothelin in the maintenance of postischemic acute renal failure. J Physiol (Lond) 444:513–522

    Google Scholar 

  19. Loutzenhiser R, Epstein M (1985) Effects of calcium antagonists on renal hemodynamics. Am J Physiol 249:F619–F629

    CAS  PubMed  Google Scholar 

  20. Loutzenhiser R, Epstein M (1990) The renal hemodynamic effects of calcium antagonists. In: Epstein M, Loutzenhiser R (eds) Calcium antagonists and the kidney. Hanley and Belfus, Philadelphia, pp 33–74

    Google Scholar 

  21. Mogensen CE (1987) Microalbuminuria as a predictor of clinical diabetic nephropathy. Kidney Int 31:673–689

    Article  CAS  PubMed  Google Scholar 

  22. Montero A, González-Sarmiento R, Rodríguez-López A, López Novoa JM (1995) Effect of verapamil on endothelin-1-induced proliferation in cultured rat mesangial cells. Cell Physiol Biochem 5:155–166

    Article  CAS  Google Scholar 

  23. Omata K, Kanazawa M, Sato T, Abe F, Saito T, Abe K (1996) Therapeutic advantages of angiotensin converting enzyme inhibitors in chronic renal disease. Kidney Int 49[Suppl 55]:S57–S62

    Google Scholar 

  24. Pfeffer JM, Pfeffer MA, Frohlich ED (1971) Validity of an indirect tail-cuff method for determining systolic arterial pressure in unanesthetized normotensive and spontaneously hypertensive rats. J Lab Clin Med 78:957–962

    CAS  PubMed  Google Scholar 

  25. Raij L, Keane WF (1985) Glomerular mesangium: its function and relationship to angiotensin II. Am J Med 79[Suppl 3C]:24–30

    Article  CAS  PubMed  Google Scholar 

  26. Remuzzi A, Ruggenenti P, Mosconi L, Pata V, Viberti G, Remuzzi G (1993) Effect of low-dose enalapril on glomerular size-selectivity in human diabetic nephropathy. J Nephrol 6:36–43

    Google Scholar 

  27. Ritz E, Hasslacher C, Tschope W, Koch M, Mann JFE (1987) Hypertension in diabetes mellitus. Contrib Neprol 54:77–85

    CAS  Google Scholar 

  28. Rosenthal T, Rosenmann E, Cohen AM (1990) Effects of nisoldipine on hypertension and glomerulosclerosis in Cohen diabetic rats with Goldblatt hypertension (abstract). Am J Hypertens 3:27

    Google Scholar 

  29. Tolins JP, Shultz P, Raij L (1988) Mechanisms of hypertensive glomerular injury. Am J Cardiol 62:54G–58G

    Article  CAS  PubMed  Google Scholar 

  30. Wen SF, Huang TP, Moorthy AV (1985) Effects of low protein diet on experimental diabetic nephropathy in the rat. J Lab Clin Med 106:589–597

    CAS  PubMed  Google Scholar 

  31. Wolf G, Neilson EG (1993) Angiotensin II as a renal growth factor. J Am Soc Nephrol 3:1531–1540

    CAS  PubMed  Google Scholar 

  32. Zatz R, Dunn BR, Meyer TW, Anderson S, Rennke HG, Brenner BM (1986) Prevention of diabetic glomerulopathy by pharmacological amelioration of glomerular capillary hypertension. J Clin Invest 77:1925–1930

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Zatz R, Meyer TW, Renke HG, Brenner BM (1985) Predominance of hemodynamic rather than metabolic factors in the pathogenesis of diabetic glomerulopathy. Proc Natl Acad Sci USA 82:5963–5967

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. US Department of Health and Human Services (1985) Guide for the Care and Use of Laboratory Animals. NIH Publication No 80-23, rev. National Institutes of Health, Bethesda, Md

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallego, B., Flores, O., López-Novoa, J.M. et al. Renal effects of antihypertensive therapy in uninephrectomized diabetic rats. Res. Exp. Med. 197, 199–209 (1997). https://doi.org/10.1007/s004330050069

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004330050069

Key words

Navigation