Skip to main content

Advertisement

Log in

Construction of an anoikis‒related prognostic signature to predict immunotherapeutic response and prognosis in hepatocellular carcinoma

  • Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Anoikis resistance is an important inducer of tumor metastasis. The role of anoikis-related genes (ARGs) in hepatocellular carcinoma (HCC) remains unclear.

Methods

A list of ARGs was obtained and regression analysis was employed to assemble an anoikis-related prognostic signature and risk score formula from mRNA data and clinical prognostic data downloaded from The Cancer Genome Atlas database. Quantitative real-time PCR (qRT-PCR) was performed on clinical samples to validate the selected ARGs expressions. Kaplan‒Meier curves, ROC curves, and Cox regression analyses were used to demonstrated the prognostic value of this signature. Biological functional enrichment analysis and immune infiltration analysis were utilized to analyze the differences in potential biological functions, immune cell infiltration, immune functions, and immunotherapeutic responses.

Results

A prognostic signature based on 6 ARGs and corresponding prognostic nomogram were established. Our qRT-PCR results showed a higher expression of 6 ARGs in HCC tissues (p value < 0.05). Kaplan‒Meier curves, ROC curves, and Cox regression analyses demonstrated good prognostic value of the signature in HCC (p value < 0.05). Significant differences between the enriched biological functions and immune landscapes of patients in different risk groups were discovered (p value < 0.05). In addition, patients with higher risk scores possibly had poor therapeutic response to transhepatic arterial chemotherapy and embolization or sorafenib, but their responses to immunotherapy might be more effective.

Conclusion

A successful anoikis-related prognostic signature and corresponding clinical nomogram were established, which might facilitate better predictions of prognosis and therapeutic responses for HCC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability statement

All the data analyzed in this research were downloaded from the TCGA (The Cancer Genome Atlas) (https://portal.gdc.cancer.gov/), ICGC (International Cancer Genome Consortium) (https://dcc.icgc.org/projects/LIRI-JP), GEO (Gene Expression Omnibus) (https://www.ncbi.nlm.nih.gov/geo), and GSEA (gene set enrichment analysis) (https://www.gsea-msigdb.org/gsea/index.jsp) databases.

Abbreviations

HCC:

Hepatocellular carcinoma

ECM:

Cell and extracellular matrix

ARGs:

Anoikis-related genes

TCGA:

The Cancer Genome Atlas

ICGC:

International Cancer Genome Consortium

GEO:

Gene Expression Omnibus

qRT-PCR:

Quantitative real-time PCR

GSEA:

Gene set enrichment analysis

TACE:

Transhepatic arterial chemotherapy and embolization

DEARGs:

Differentially expressed ARGs

LASSO:

Least absolute shrinkage and selection operator

K-M:

Kaplan–Meier

ROC:

Receiver operating characteristic

PCA:

Principal component analysis

AUC:

Area under the curve

DEGs:

Differentially expressed genes

GO:

Gene Ontology

KEGG:

Kyoto Encyclopedia of Genes and Genomes

FDR:

False discovery rate

TIDE:

Tumor immune dysfunction and exclusion

CNV:

Copy number variation

TIMER:

Tumor Immune Estimation Resource

OS:

Overall survival

PFS:

Progression free survival

TNM:

Tumor size/lymph nodes/distant metastasis

DCs:

Dendritic cells

NK cells:

Natural killer cells

IFN:

Interferon

IC50:

Half maximal inhibitory concentration

References

  • Barrett T, Wilhite SE, Ledoux P et al (2013) NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res 41:D991-995

    CAS  PubMed  Google Scholar 

  • Chen Z, Liu X, Zhu Z et al (2022) A novel anoikis-related prognostic signature associated with prognosis and immune infiltration landscape in clear cell renal cell carcinoma. Front Genet 13:1039465

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chuah S, Lee J, Song Y et al (2022) Uncoupling immune trajectories of response and adverse events from anti-PD-1 immunotherapy in hepatocellular carcinoma. J Hepatol 77:683–694

    CAS  PubMed  Google Scholar 

  • Corpuz AD, Ramos JW, Matter ML (2020) PTRH2: an adhesion regulated molecular switch at the nexus of life, death, and differentiation. Cell Death Discov 6:124

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dennis G Jr, Sherman BT, Hosack DA et al (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4:P3

    PubMed  Google Scholar 

  • Gao R, Kalathur RKR, Coto-Llerena M et al (2021) YAP/TAZ and ATF4 drive resistance to Sorafenib in hepatocellular carcinoma by preventing ferroptosis. EMBO Mol Med 13:e14351

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gilmore AP (2005) Anoikis. Cell Death Differ 12(Suppl 2):1473–1477

    CAS  PubMed  Google Scholar 

  • Hausmann M, Leucht K, Ploner C et al (2011) BCL-2 modifying factor (BMF) is a central regulator of anoikis in human intestinal epithelial cells. J Biol Chem 286:26533–26540

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hudson TJ, Anderson W, Artez A et al (2010) International network of cancer genome projects. Nature 464:993–998

    CAS  PubMed  Google Scholar 

  • Khotskaya YB, Beck BH, Hurst DR et al (2014) Expression of metastasis suppressor BRMS1 in breast cancer cells results in a marked delay in cellular adhesion to matrix. Mol Carcinog 53:1011–1026

    CAS  PubMed  Google Scholar 

  • Li T, Fan J, Wang B et al (2017) TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells. Can Res 77:e108–e110

    CAS  Google Scholar 

  • Li K, Zhao G, Ao J et al (2019) ZNF32 induces anoikis resistance through maintaining redox homeostasis and activating Src/FAK signaling in hepatocellular carcinoma. Cancer Lett 442:271–278

    CAS  PubMed  Google Scholar 

  • Lin Z, Niu Y, Wan A et al (2020) RNA m(6) A methylation regulates sorafenib resistance in liver cancer through FOXO3-mediated autophagy. EMBO J 39:e103181

    CAS  PubMed  PubMed Central  Google Scholar 

  • Llovet JM, Castet F, Heikenwalder M et al (2022) Immunotherapies for hepatocellular carcinoma. Nat Rev Clin Oncol 19:151–172

    CAS  PubMed  Google Scholar 

  • Martin SP, Fako V, Dang H et al (2020) PKM2 inhibition may reverse therapeutic resistance to transarterial chemoembolization in hepatocellular carcinoma. J Exp Clin Cancer Res CR 39:99

    CAS  PubMed  Google Scholar 

  • Mo CF, Li J, Yang SX et al (2020) IQGAP1 promotes anoikis resistance and metastasis through Rac1-dependent ROS accumulation and activation of Src/FAK signalling in hepatocellular carcinoma. Br J Cancer 123:1154–1163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qi X, Guo J, Chen G et al (2022) Cuproptosis-related signature predicts the prognosis, tumor microenvironment, and drug sensitivity of hepatocellular carcinoma. J Immunol Res 2022:3393027

    PubMed  PubMed Central  Google Scholar 

  • Qiao L, Zhang Q, Sun Z et al (2021) The E2F1/USP11 positive feedback loop promotes hepatocellular carcinoma metastasis and inhibits autophagy by activating ERK/mTOR pathway. Cancer Lett 514:63–78

    CAS  PubMed  Google Scholar 

  • Raoul JL, Forner A, Bolondi L, Cheung TT, Kloeckner R, de Baere T (2019) Updated use of TACE for hepatocellular carcinoma treatment: how and when to use it based on clinical evidence. Cancer Treat Rev 72:28–36

    CAS  PubMed  Google Scholar 

  • Sangro B, Sarobe P, Hervás-Stubbs S, Melero I (2021) Advances in immunotherapy for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 18:525–543

    PubMed  PubMed Central  Google Scholar 

  • Shi Y, Shang J, Li Y et al (2022) ITGA5 and ITGB1 contribute to Sorafenib resistance by promoting vasculogenic mimicry formation in hepatocellular carcinoma. Cancer Med 12(3):3786–3796

    PubMed  PubMed Central  Google Scholar 

  • Song J, Liu Y, Liu F et al (2021) The 14-3-3σ protein promotes HCC anoikis resistance by inhibiting EGFR degradation and thereby activating the EGFR-dependent ERK1/2 signaling pathway. Theranostics 11:996–1015

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sung H, Ferlay J, Siegel RL et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 Countries. CA Cancer J Clin 71:209–249

    PubMed  Google Scholar 

  • Taddei ML, Giannoni E, Fiaschi T, Chiarugi P (2012) Anoikis: an emerging hallmark in health and diseases. J Pathol 226:380–393

    CAS  PubMed  Google Scholar 

  • Tang W, Chen Z, Zhang W et al (2020) The mechanisms of sorafenib resistance in hepatocellular carcinoma: theoretical basis and therapeutic aspects. Signal Transduct Target Ther 5:87

    PubMed  PubMed Central  Google Scholar 

  • Tomczak K, Czerwińska P, Wiznerowicz M (2015) The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Poznan, Poland) 19:A68-77

    Google Scholar 

  • Villanueva A (2019) Hepatocellular carcinoma. N Engl J Med 380:1450–1462

    CAS  PubMed  Google Scholar 

  • Wang YN, Zeng ZL, Lu J et al (2018) CPT1A-mediated fatty acid oxidation promotes colorectal cancer cell metastasis by inhibiting anoikis. Oncogene 37:6025–6040

    CAS  PubMed  Google Scholar 

  • Wei X, Zhao L, Ren R et al (2021) MiR-125b loss activated HIF1α/pAKT loop, leading to transarterial chemoembolization resistance in hepatocellular carcinoma. Hepatology (baltimore, MD) 73:1381–1398

    CAS  PubMed  Google Scholar 

  • Whelan KA, Caldwell SA, Shahriari KS et al (2010) Hypoxia suppression of Bim and Bmf blocks anoikis and luminal clearing during mammary morphogenesis. Mol Biol Cell 21:3829–3837

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu FQ, Fang T, Yu LX et al (2016) ADRB2 signaling promotes HCC progression and sorafenib resistance by inhibiting autophagic degradation of HIF1α. J Hepatol 65:314–324

    CAS  PubMed  Google Scholar 

  • Xia S, Pan Y, Liang Y, Xu J, Cai X (2020) The microenvironmental and metabolic aspects of sorafenib resistance in hepatocellular carcinoma. EBioMedicine 51:102610

    PubMed  PubMed Central  Google Scholar 

  • Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A, Roberts LR (2019) A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol 16:589–604

    PubMed  PubMed Central  Google Scholar 

  • Yu M, Lu B, Liu Y, Me Y, Wang L, Li H (2017) Interference with Tim-3 protein expression attenuates the invasion of clear cell renal cell carcinoma and aggravates anoikis. Mol Med Rep 15:1103–1108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Zhao D, Li K et al (2020) E2F1 mediated DDX11 transcriptional activation promotes hepatocellular carcinoma progression through PI3K/AKT/mTOR pathway. Cell Death Dis 11:273

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Song Y, Cheng L et al (2022) CircCEMIP promotes anoikis-resistance by enhancing protective autophagy in prostate cancer cells. J Exp Clin Cancer Res CR 41:188

    CAS  PubMed  Google Scholar 

  • Zhang YF, Zhang AR, Zhang BC et al (2013) MiR-26a regulates cell cycle and anoikis of human esophageal adenocarcinoma cells through Rb1-E2F1 signaling pathway. Mol Biol Rep 40:1711–1720

    CAS  PubMed  Google Scholar 

  • Zhang X, Cheng SL, Bian K et al (2015) MicroRNA-26a promotes anoikis in human hepatocellular carcinoma cells by targeting alpha5 integrin. Oncotarget 6:2277–2289

    PubMed  Google Scholar 

  • Zhang YY, Li XW, Li XD et al (2022a) Comprehensive analysis of anoikis-related long non-coding RNA immune infiltration in patients with bladder cancer and immunotherapy. Front Immunol 13:1055304

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Huang Y, Yang E et al (2022b) Identification of a fibroblast-related prognostic model in glioma based on bioinformatics methods. Biomolecules 12:1598

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou C, Zhang Z, Zhu X et al (2020) N6-Methyladenosine modification of the TRIM7 positively regulates tumorigenesis and chemoresistance in osteosarcoma through ubiquitination of BRMS1. EBioMedicine 59:102955

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Shandong Provincial Taishan Scholars Expert Program (Grant No. tstp20221158), the National Natural Science Foundation of China (82172647, 82073200, 81874178), the Fundamental Research Funds for the Central Universities (Shandong University), Shandong Provincial Natural Science Foundation (Grant No. ZR2021ZD26, ZR2021MH194) and the Jinan University Innovation Team Independent Training Fund (2020GXRC023).

Author information

Authors and Affiliations

Authors

Contributions

CX, GQP and GXM designed the research process of this study. CX, HCW and LJY. downloaded and processed the data from common databases. CX accomplished the experiments in this study. CX, RZL, CCY, YFY and YCY drew the pictures and made all the tables in this research. CX and XZ accomplished and revised the manuscript. ZRD and TL were responsible for the designment and accomplishment of this research. All authors agreed to submit this manuscript.

Corresponding authors

Correspondence to Zhaoru Dong or Tao Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics statement

All patient’s samples in this study were approved by the Ethics Committee of Qilu Hospital of Shandong University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

432_2023_5428_MOESM1_ESM.jpg

Supplementary file1 Fig. S1: qRT-PCR results showing the expression of 6 ARGs in HCC and paracancerous tissues. (A) E2F1. (B) BRMS1. (C) ITGA5. (D) PTRH2. (E) PTK2. (F) BMF. * p value <0.05; ** p value <0.01 (JPG 1009 KB)

432_2023_5428_MOESM2_ESM.jpg

Supplementary file2 Fig. S2: Verifying the values of the signature to predict HCC patient prognosis via data from the GSE116174 dataset. (A) Kaplan‒Meier curves showing the OS of HCC patients in different risk groups. (B-C) Scatterplots showing the survival conditions and survival times of HCC patients in the GSE116174 dataset. (D) ROC curves showing the AUC values of the prognostic signature at 1, 3, and 5 years in the GSE116174 dataset. (F) A heatmap showing the expression levels of 6 ARGs in tissues of different risk groups in the GSE116174 dataset (JPG 693 KB)

432_2023_5428_MOESM3_ESM.jpg

Supplementary file3 Fig. S3: Univariate and multivariate Cox regression analyses of the risk score. (A): Univariate Cox regression analysis via data from TCGA database. (B): Multivariate Cox regression analysis via data from the TCGA database. (C): Univariate Cox regression analysis via data from the ICGC database. (D): Multivariate Cox regression analysis via data from the ICGC database (JPG 404 KB)

432_2023_5428_MOESM4_ESM.jpg

Supplementary file4 Fig. S4: Boxplots showing the expression of 6 ARGs in patients with different clinical features. * p value <0.05; ** p value <0.01; *** p value <0.001 (JPG 1028 KB)

432_2023_5428_MOESM5_ESM.jpg

Supplementary file5 Fig. S5: Boxplots showing the different IC50 values of 6 types of common chemotherapeutic drugs between patients with different prognostic risks. (A): Cisplatin. (B): Cyclophosphamide. (C): 5-Fluorouracil. (D): Gemcitabine. (E): Oxaliplatin. (F): Temozolomide (JPG 971 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, C., Pan, G., Wang, H. et al. Construction of an anoikis‒related prognostic signature to predict immunotherapeutic response and prognosis in hepatocellular carcinoma. J Cancer Res Clin Oncol 149, 16869–16884 (2023). https://doi.org/10.1007/s00432-023-05428-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-023-05428-0

Keywords

Navigation